ROMANIAN MATHEMATICAL MAGAZINE

J. 2511 Let $A B C D$ be a rectangle with $A B=l, B C=2 l$ and M an interior point such that $<M A B=<M B A=15^{\circ}$. Find the angles' measures of triangle $M C D$.

Proposed by Dan Grigorie, Lucian Tuțescu - Romania

Solution by Titu Zvonaru-Romania

Since $<M A B=<M B A=15^{\circ}$, the point M belongs to the perpendicular bisector of $A B$; te triangle $M C D$ is isosceles with $M C=M D$.

Solution 1.

Let P, Q be the midpoints of sides $B C$ and $A D$, respectively. We consider the point M^{\prime} in interior of the rectangle, such that the triangle $P M^{\prime} Q$ is equilateral. Yields that triangle $\boldsymbol{Q A M ^ { \prime }}$ is isosceles with $<\boldsymbol{Q A M ^ { \prime }}=\mathbf{3 0 ^ { \circ }}$, hence $<\boldsymbol{Q A M ^ { \prime } = 7 5 ^ { \circ } \text { . It follows that } < \boldsymbol { M } ^ { \prime } A B = ~ = ~}$ 15° and point M^{\prime} coincide with the point M. It results that in triangle $A M D$, the median $M Q$ is equal to half of $A D$. We deduce that triangle $A M D$ is right-angled, $<A M D=90^{\circ},<$ $A D M=15^{\circ}$, that is $\angle M D C=75^{\circ}$.

Solution 2.
We denote $x=<A D M$. Since $A M=\frac{l}{2 \cos 15^{\circ}}=\frac{l \sin 15^{\circ}}{2 \sin 15^{\circ} \cos 15^{\circ}}=\frac{l \sin 15^{\circ}}{\sin 30^{\circ}}=2 l \sin 15^{\circ}$, by the sines law in triangle $A M D$ we obtain

$$
\begin{gathered}
\frac{A M}{\sin x}=\frac{A D}{\sin \left(x+75^{\circ}\right)} \Leftrightarrow \frac{2 l \sin 15^{\circ}}{\sin x}=\frac{2 l}{\sin \left(x+75^{\circ}\right)} \Leftrightarrow \sin 15^{\circ} \sin \left(x+75^{\circ}\right)=\sin x \\
\cos \left(x+60^{\circ}\right)-\cos \left(x+90^{\circ}\right)=2 \sin x \Leftrightarrow \cos \left(x+60^{\circ}\right)+\sin x=2 \sin x \Leftrightarrow \\
\sin \left(30^{\circ}-x\right)=\sin x \Leftrightarrow x=15^{\circ}, \\
\text { hence }<M D C=75^{\circ} .
\end{gathered}
$$

Solution 3.
Since $A M=\frac{l}{2 \cos 15^{\circ}}$, by cosines law we obtain

$$
\begin{gathered}
M D^{2}=A M^{2}+A D^{2}-2 A M \cdot A D \cos 75^{\circ}=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+4 l^{2}-\frac{4 l^{2} \cos 75^{\circ}}{2 \cos 15^{\circ}}= \\
=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+4 l^{2}-\frac{4 l^{2} \sin 15^{\circ} \cos 15^{\circ}}{2 \cos ^{2} 15^{\circ}}=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+4 l^{2}-\frac{l^{2} \sin 30^{\circ}}{\cos ^{2} 15^{\circ}}= \\
=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+4 l^{2}-\frac{l^{2}}{2 \cos ^{2} 15^{\circ}}=4 l^{2}-\frac{l^{2}}{4 \cos ^{2} 15^{\circ}} .
\end{gathered}
$$

It easy to see that $A M^{2}+M D^{2}=4 I^{2}=A D^{2}$, that is the triangle $A M D$ is right-angled at D. It follows that $\angle A D M=90^{\circ}-\mathbf{7 5}^{\circ}=15^{\circ}$, hence $<M D C=75^{\circ}$.

ROMANIAN MATHEMATICAL MAGAZINE

Solution 4.

$$
\begin{gathered}
\text { Since } A M=\frac{l}{2 \cos 15^{\circ}}, \text { by } \operatorname{cosines} \text { law we obtain } \\
M Q^{2}=A M^{2}+A Q^{2}-2 A M \cdot A Q \cos 75^{\circ}=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+l^{2}-\frac{2 l^{2} \cos 75^{\circ}}{2 \cos 15^{\circ}}= \\
=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+l^{2}-\frac{2 l^{2} \sin 15^{\circ} \cos 15^{\circ}}{2 \cos ^{2} 15^{\circ}}=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+l^{2}-\frac{l^{2} \sin 30^{\circ}}{2 \cos ^{2} 15^{\circ}}= \\
=\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}+l^{2}-\frac{l^{2}}{4 \cos ^{2} 15^{\circ}}=l^{2}=A Q^{2} .
\end{gathered}
$$

In triangle $A M D$, the median $M Q$ is equal to half of $A D$; then the triangle $A M D$ is rightangled, $\quad<M D A=15^{\circ}$ and $\angle M D C=75^{\circ}$.

