ROMANIAN MATHEMATICAL MAGAZINE

J. 2517 In triangle $A B C$ the bisectors $A D$ and $C E$ intersect at point I. The points B, D, I, E lies themselves on a circle. Find the measure of angle B.

Proposed by Simona Chiriță - Romania

Solution by Titu Zvonaru-Romania

Using bisector's theorem we have

$$
A D=\frac{2 b c \cos \frac{A}{2}}{b+c}, A I=\frac{b c \cos \frac{A}{2}}{s}, A E=\frac{b c}{a+b} .
$$

Applying the power of point A with respect to the circumcircle of quadrilateral BDIE it follows that

$$
A I \cdot A D=A E \cdot A B
$$

which is equivalent to

$$
\begin{gathered}
\quad \frac{b c \cos \frac{A}{2}}{s} \cdot \frac{2 b c \cos \frac{A}{2}}{b+c}=\frac{b c}{a+b} \cdot c \Leftrightarrow \frac{2 b s(s-a)}{s b c(b+c)}=\frac{1}{a+b} \Leftrightarrow \\
\Leftrightarrow 2(a+b)(s-a)=c(b+c) \Leftrightarrow(a+b)(b+c-a)=c(b+c) \\
\Leftrightarrow a b+a c-a^{2}+b^{2}+b c-a b=b c+c^{2} \Leftrightarrow a c=a^{2}+c^{2}-b^{2} \\
\Leftrightarrow a c=2 a c \cos B \Leftrightarrow \cos B=\frac{1}{2}, \\
\text { hence } B=60^{\circ} .
\end{gathered}
$$

