ROMANIAN MATHEMATICAL MAGAZINE

J. 2519 Find $m, n \in R$ such that $E(x)=x^{4}+m x^{3}+n x^{\times}-8 x+1$ be perfect square.

Proposed by Gilena Dobrică - Romania

Solution by Titu Zvonaru-Romania

We have to determine $p, q \in R$ such that

$$
\begin{gathered}
x^{4}+m x^{3}+n x^{2}-8 x+1=\left(x^{2}+p x+q\right)^{2} \\
x^{4}+m x^{3}+n x^{2}-8 x+1=x^{4}+2 p x^{3}+\left(p^{2}+2 q\right) x^{2}+2 p q x+q^{2}
\end{gathered}
$$

It follows that $m=2 p, n=p^{2}+2 q,-8=2 p q, 1=q^{2}$. We have two possibilities:

$$
\begin{gathered}
q=1, p=-4, n=18, m=-8 \\
q=-1, p=4, n=14, m=8
\end{gathered}
$$

Since

$$
\begin{aligned}
\left(x^{2}-4 x+1\right)^{2} & =x^{4}-8 x^{3}+18 x^{2}-8 x+1,\left(x^{2}+4 x-1\right)^{2} \\
& =x^{4}+8 x^{3}+14 x^{2}-8 x+1
\end{aligned}
$$

yields that $(m, n)=(-8,18),(8,14)$.

