ROMANIAN MATHEMATICAL MAGAZINE

J. 2538 If $1 \leq x \leq 2 \leq y \leq 3 \leq z$ then

$$
\frac{2}{z}+\frac{2 z}{3}>\frac{x}{2}+\frac{1}{x}+\frac{y}{6}+\frac{1}{y}
$$

Proposed by Daniel Sitaru, Dan Nănuți - Romania

Solution by Titu Zvonaru-Romania

Since $1 \leq x \leq 2$ we have

$$
\begin{equation*}
(x-1)(x-2) \leq 0 \Leftrightarrow x^{2}+2 \leq 3 x \Leftrightarrow \frac{x}{2}+\frac{1}{x} \leq \frac{3}{2} \tag{1}
\end{equation*}
$$

Since $2 \leq y \leq 3$ we obtain

$$
\begin{equation*}
(y-2)(y-3) \leq 0 \Leftrightarrow y^{2}+6 \leq 5 y \Leftrightarrow \frac{y}{6}+\frac{1}{y} \leq \frac{5}{6} \tag{2}
\end{equation*}
$$

By (1) and (2) yields that it suffices to prove that

$$
\frac{2}{z}+\frac{2 z}{3} \geq \frac{3}{2}+\frac{5}{6} \Leftrightarrow \frac{2 z^{2}+6}{3 z} \geq \frac{14}{6} \Leftrightarrow 2 z^{2}+6 \geq 7 z \Leftrightarrow(z-2)(2 z-3) \geq 0
$$

which is true because $z \geq 3$. The inequality is strict.

