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𝟐𝟏𝟔[𝑰𝑩𝑨′][𝑰𝑪𝑩′][𝑰𝑨𝑪′] ≤ 𝑭𝟑 

Proposed by Daniel Sitaru, Meda Iacob – Romania  

   Solution by Titu Zvonaru-Romania 
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Using 𝑨𝑴 − 𝑮𝑴 inequality we obtain (𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂) ≥ 𝟖𝒂𝒃𝒄 and 

(𝒂 + 𝒃 + 𝒄)𝟑 ≥ 𝟐𝟕𝒂𝒃𝒄 . It follows that: 

𝟐𝟏𝟔[𝑰𝑩𝑨′][𝑰𝑪𝑩′][𝑰𝑨𝑪′] =
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Equality holds if and only if 𝒂 = 𝒃 = 𝒄 that is if and only if  𝑨𝑩𝑪 is equilateral. 


