ROMANIAN MATHEMATICAL MAGAZINE

S. $2374 A A^{\prime}, B B^{\prime}, C C^{\prime}$ - internal bisectors of $\triangle A B C$ with I incenter. Prove that:

$$
216\left[I B A^{\prime}\right]\left[I C B^{\prime}\right]\left[I A C^{\prime}\right] \leq F^{3}
$$

Proposed by Daniel Sitaru, Meda lacob - Romania

Solution by Titu Zvonaru-Romania

By bisector theorem we have $I A=\frac{b c \cos _{2}^{\frac{A}{2}}}{s}, A C^{\prime}=\frac{b c}{a+c}$. Yields that

$$
\left[I A C^{\prime}\right]=\frac{b^{2} c^{2} \sin \frac{A}{2} \cos \frac{A}{2}}{2 s(a+c)}=\frac{b^{2} c^{2} \sin A}{4 s(a+c)}=\frac{b c F}{2 s(a+c)} .
$$

Using $A M-G M$ inequality we obtain $(a+b)(b+c)(c+a) \geq 8 a b c$ and

$$
(a+b+c)^{3} \geq 27 a b c \text {. It follows that: }
$$

$$
\begin{gathered}
216\left[I B A^{\prime}\right]\left[I C B^{\prime}\right]\left[I A C^{\prime}\right]=\frac{216 a^{2} b^{2} c^{2} F^{3}}{8 s^{3}(a+b)(b+c)(c+a)} \leq \\
\leq \frac{216 a^{2} b^{2} c^{2} F^{3}}{8 a b c(a+b+c)^{3}} \leq \frac{27 a b c F^{3}}{27 a b c}=F^{3}
\end{gathered}
$$

Equality holds if and only if $a=b=c$ that is if and only if $\triangle A B C$ is equilateral.

