ROMANIAN MATHEMATICAL MAGAZINE

S. $2384 A B C D$ - convex quadrilateral, $A B=a, B C=b, C D=c$,

$$
\begin{gathered}
D A=d, A C=e, B D=f, A C \perp B D \text {. Prove that: } \\
\frac{a^{3} b}{c^{2}}+\frac{b^{3} c}{d^{2}}+\frac{c^{3} d}{a^{2}}+\frac{d^{3} a}{b^{2}} \geq \frac{8 e^{2} f^{2}}{(e+f)^{2}}
\end{gathered}
$$

Proposed by Daniel Sitaru, Claudia Nănuți - Romania

Solution by Titu Zvonaru-Romania

Since $A C \perp B D$, we have $a^{2}+c^{2}=b^{2}+d^{2} \quad$ (1), and by Ptolemy inequality

$$
\text { we have } a c+b d \geq e f
$$

By $A M$ - GM inequality, using (2), we obtain

$$
\begin{equation*}
\frac{8 e^{2} f^{2}}{(e+f)^{2}} \leq \frac{8 e^{2} f^{2}}{4 e f}=2 e f \leq 2(a c+b d) \tag{3}
\end{equation*}
$$

Applying Radon's inequality, yields that:

$$
\begin{gathered}
\frac{a^{3} b}{c^{2}}+\frac{b^{3} c}{d^{2}}+\frac{c^{3} d}{a^{2}}+\frac{d^{3} a}{b^{2}}=\frac{(a b)^{3}}{(b c)^{2}}+\frac{(b c)^{3}}{(c d)^{2}}+\frac{(c d)^{3}}{(d a)^{2}}+\frac{(d a)^{3}}{(a b)^{2}} \geq \frac{(a b+b c+c d+d a)^{3}}{(a b+b c+c d+d a)^{2}} \\
=a b+b c+c d+d a
\end{gathered}
$$

Using inequalities (3) and (4), it results that it suffices to prove that

$$
\begin{equation*}
(a+c)(b+d) \geq 2 a c+2 b d \tag{5}
\end{equation*}
$$

By the relation (1), the relation (5) is equivalent to

$$
(a+c)(b+d)+a^{2}+c^{2} \geq b^{2}+d^{2}+2 a c+2 b d
$$

$$
\begin{gather*}
(a+c)(b+d)-(b+d)^{2}+(a-c)^{2} \geq 0 \Leftrightarrow(b+d)(a+c-b-d)+(a-c)^{2} \\
\geq 0 \quad(6) \tag{6}
\end{gather*}
$$

In a similar way, the inequality (5) is equivalent to

$$
\begin{gather*}
(a+c)(b+d)+b^{2}+d^{2} \geq a^{2}+c^{2}+2 a c+2 b d \\
(a+c)(b+d)-(a+c)^{2}+(b-d)^{2} \geq 0 \Leftrightarrow \\
(a+c)(b+d-a-c)+(b-d)^{2} \geq 0 \tag{7}
\end{gather*}
$$

If $a+c \geq b+d$ then the inequality (6) is true, else the inequality (7) is true. It follows that the inequality (5) is true.

Equality holds if and only if $e=f, a=c, b=d$, hence if and only if $A B C D$ is a square.

