ROMANIAN MATHEMATICAL MAGAZINE

S.2416 If u, v > 0 and $M \in Int(\Delta ABC)$, $x_a = d(M, BC)$, $x_b = d(M, CA)$,

$$x_c = d(M, AB)$$
 then:

$$\frac{a}{uh_a + vx_a} + \frac{b}{uh_b + vx_b} + \frac{c}{uh_c + vx_c} \ge \frac{6\sqrt{3}}{3u + v}$$

Proposed by D.M. Bătinețu-Giurgiu - Romania

Solution by Titu Zvonaru-Romania

Let F be the area of $\triangle ABC$. We have $ah_a=bh_b=ch_c=2F$, $ax_a+bx_b+cx_c=2F$.

By AM-GM inequality and Carlitz's inequality $(abc)^{2/3} \geq rac{4}{3} F \sqrt{3}$ we obtain

$$(a+b+c)^2 \ge 9(abc)^{\frac{2}{3}} \ge 12F\sqrt{3}.$$

Using Bergström inequality, it follows that

$$\frac{a}{uh_a + vx_a} + \frac{b}{uh_b + vx_b} + \frac{c}{uh_c + vx_c} \ge$$

$$\geq \frac{(a+b+c)^2}{u(ah_a+bh_b+ch_c)+v(ax_a+bx_b+cx_c)} \geq \frac{12F\sqrt{3}}{(6u+2v)F} = \frac{6\sqrt{3}}{3u+v}$$