ROMANIAN MATHEMATICAL MAGAZINE

S. 2454 If $a, b, c>0, a+b+c=m$ and $a b+b c+c a=n$, prove that

$$
\max (a, b, c)-\min (a, b, c) \leq \frac{4}{3} \sqrt{m^{2}-3 n}
$$

Proposed by Hikmat Mammadov - Azerbaijan

Solution by Titu Zvonaru-Romania

Suppose that $a \geq b \geq c$; yields that there are $x, y \geq 0$ such that $a=c+x+y, b=c+x$.
We have to prove that:

$$
\begin{gathered}
9(x+y)^{2} \leq 16\left((3 c+2 x+y)^{2}-3((c+x+y)(c+x)+(c+x) c+c(c+x+y))\right. \\
\Leftrightarrow 7 x^{2}-2 x y+7 y^{2} \geq 0 \Leftrightarrow 6\left(x^{2}+y^{2}\right)+(x-y)^{2} \geq 0 .
\end{gathered}
$$

Equality holds if and only if $x=y=0$, that is $a=b=c, m^{2}=3 n$.

