ROMANIAN MATHEMATICAL MAGAZINE

S.2462 If $x, y, z \ge 0$, then in $\triangle ABC$ holds:

$$\frac{ayz}{h_a} + \frac{byz}{h_b} + \frac{czx}{h_c} \le \frac{R^2}{2F}(x+y+z)^2$$

Proposed by D.M.Bătinețu-Giurgiu, Claudia Nănuți – Romania

Solution by Titu Zvonaru-Romania

Since
$$ah_a = bh_b = ch_c = 2F$$
, we have
 $\frac{ayz}{h_a} + \frac{byz}{h_b} + \frac{czx}{h_c} = \frac{a^2yz + b^2zx + c^2xy}{2F}$.

We have to prove that $a^2yz + b^2zx + c^2xy \le R^2(x + y + z)^2$.

This inequality is the inequality of Kooi.

Equality holds if and only if $\triangle ABC$ is equilateral and x = y = z.

Note by editor:

The solver used Klamkin's inequality (1975):

If R_1, R_2, R_3 —are the distances from a point *P* to the vertices *A*, *B*, *C* of $\triangle ABC$ with sides *a*, *b*, *c* then:

$$a^{2}yz + b^{2}zx + c^{2}xy \le (x + y + z)(xR_{1}^{2} + yR_{2}^{2} + zR_{3}^{2})$$

If we take in (1), $R_1 = R_2 = R_3 = R$ which means that P = O —the circumcenter of $\triangle ABC$ we obtain Kooi's inequality:

$$a^2yz + b^2zx + c^2xy \le R^2(x+y+z)^2$$