ROMANIAN MATHEMATICAL MAGAZINE

S. 2462 If $x, y, z \geq 0$, then in $\triangle A B C$ holds:

$$
\frac{a y z}{h_{a}}+\frac{b y z}{h_{b}}+\frac{c z x}{h_{c}} \leq \frac{R^{2}}{2 F}(x+y+z)^{2}
$$

Proposed by D.M.Bătinețu-Giurgiu, Claudia Nănuți - Romania
Solution by Titu Zvonaru-Romania

$$
\begin{gathered}
\text { Since } a h_{a}=b h_{b}=c h_{c}=2 F \text {, we have } \\
\frac{a y z}{h_{a}}+\frac{b y z}{h_{b}}+\frac{c z x}{h_{c}}=\frac{a^{2} y z+b^{2} z x+c^{2} x y}{2 F} .
\end{gathered}
$$

We have to prove that $a^{2} y z+b^{2} z x+c^{2} x y \leq R^{2}(x+y+z)^{2}$.
This inequality is the inequality of Kooi.
Equality holds if and only if $\triangle A B C$ is equilateral and $x=y=z$.
Note by editor:
The solver used Klamkin's inequality (1975):
If R_{1}, R_{2}, R_{3}-are the distances from a point P to the vertices A, B, C of $\triangle A B C$ with sides a, b, c then:

$$
a^{2} y z+b^{2} z x+c^{2} x y \leq(x+y+z)\left(x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2}\right)
$$

If we take in (1), $R_{1}=R_{2}=R_{3}=R$ which means that $P=O$-the circumcenter of $\triangle A B C$ we obtain Kooi's inequality:

$$
a^{2} y z+b^{2} z x+c^{2} x y \leq R^{2}(x+y+z)^{2}
$$

