ROMANIAN MATHEMATICAL MAGAZINE

S. 2470 If $a, b, c>0$ and $a+b+c=3$ then find

$$
\max \left\{\sum_{\mathrm{cyc}} \frac{a}{a^{2}+3}+\sum_{\mathrm{cyc}} \frac{a^{2}}{a^{3}+1}\right\}
$$

Proposed by Sidi Abdallah Lemrabott - Mauritania

Solution by Titu Zvonaru-Romania

We will prove that

$$
\begin{equation*}
\sum_{\mathrm{cyc}}\left(\frac{a}{a^{2}+3}+\frac{a^{2}}{a^{3}+1}\right) \leq \frac{9}{4} \tag{1}
\end{equation*}
$$

By tangent line method, we search $\boldsymbol{m}, \boldsymbol{n}$ such that

$$
\begin{equation*}
\frac{x}{x^{2}+3}+\frac{x^{2}}{x^{3}+1} \leq m x+n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { For } x=1 \text {, from (2) we get } m+n=\frac{3}{4} \tag{3}
\end{equation*}
$$

By derivation, the inequality (2) becomes

$$
\begin{equation*}
\frac{x^{2}+3-2 x^{2}}{\left(x^{2}+3\right)^{2}}+\frac{2 x\left(x^{3}+1\right)-3 x^{4}}{\left(x^{3}+1\right)^{2}} \leq m \tag{4}
\end{equation*}
$$

For $x=1$, from (4) we obtain $m=\frac{3}{8}$. Now, by (3) yields $n=\frac{3}{8}$.
For $m=n=\frac{3}{8}$, the inequality (2) is equivalent to

$$
\begin{gathered}
\frac{x}{x^{2}+3}+\frac{x^{2}}{x^{3}+1} \leq \frac{3(x+1)}{8} \\
3 x^{6}+3 x^{5}-7 x^{4}+12 x^{3}-21 x^{2}+x+9 \geq 0 \\
(x-1)^{2}\left(3 x^{4}+9 x^{3}+8 x^{2}+19 x+9\right) \geq 0
\end{gathered}
$$

which is true for $\boldsymbol{x}>\mathbf{0}$.
Writting the inequality (5) for a, b, c, and adding up, it follows that

$$
\sum_{\mathrm{cyc}}\left(\frac{a}{a^{2}+3}+\frac{a^{2}}{a^{3}+1}\right) \leq \frac{3(\mathrm{a}+1)}{8}+\frac{3(b+1)}{8}+\frac{3(c+1)}{8}=\frac{3(a+b+c)}{8}+\frac{9}{8}=\frac{9}{4}
$$

The searched maximum is equal to $\frac{9}{4}$, obtained for $a=b=c=1$.

