ROMANIAN MATHEMATICAL MAGAZINE

S. $2481 A B$ diameter in a semicircle with O - center. $A C D O$ - is a square outside semicircle, $E-$ is a point on semicircle such that $\boldsymbol{m}(<C B E)=90^{\circ}$. Prove that : $[A C D O]=[C B E]$.

Proposed by Mehmet Șahin - Turkey

Solution by Titu Zvonaru-Romania

Suppose that $A O=1$. Let M the orthogonal projection of A onto $B C$. Since E lies on the semicircle, we have:

$$
<\boldsymbol{A E B}=<E B C=<B M A .
$$

It results that the quadrilateral $A M B E$ has three right angles, hence $A M B E$ is a rectangle.
From the right-angled triangle $A B C$ we obtain

$$
A C=1, A B=2, B C=\sqrt{1+4}=\sqrt{5}, A M=\frac{A C \cdot A B}{B C}=\frac{2}{\sqrt{5}} .
$$

Since $E B=A M$ and $m(<C B E)=90^{\circ}$, it follows that

$$
[C B E]=\frac{B C \cdot E B}{2}=\frac{\sqrt{5}}{2} \cdot \frac{2}{\sqrt{5}}=1=[A C D O]
$$

