ROMANIAN MATHEMATICAL MAGAZINE

S. 2602 If $\mathbf{m} \geq \mathbf{0}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z}>0$ then in the triangle ABC the following relationship holds:

$$
\begin{gathered}
\frac{m x+(m+1) y}{(m+1) x+m y+(2 m+1) z} a^{2}+\frac{m y+(m+1) z}{(m+1) y+m z+(2 m+1) x} b^{2} \\
+\frac{m z+(m+1) x}{(m+1) z+m x+(2 m+1) y} c^{2} \geq 2 \sqrt{3} \cdot F
\end{gathered}
$$

Proposed by D.M.Bătinețu-Giurgiu, Dan Nănuți - Romania

Solution by Titu Zvonaru-Romania

We denote $u=m y+(m+1) z, v=m z+(m+1) x, w=m x+(m+1) y$. We get:

$$
\begin{gathered}
u+v=(m+1) x+m y+(2 m+1) z, v+w=(2 m+1) x+(m+1) y+m z \\
w+u=m x+(2 m+1) y+(m+1) z
\end{gathered}
$$

The given inequality is equivalent to

$$
\begin{equation*}
\frac{w}{u+v} a^{2}+\frac{u}{v+w} b^{2}+\frac{v}{w+u} c^{2} \geq 2 \sqrt{3} \cdot F \tag{1}
\end{equation*}
$$

The inequality (1) is Tsintsifas inequality.
Equality holds if and only the triangle $A B C$ is equilateral and

$$
u=v=w \text { (that is } x=y=z \text {.) }
$$

