ROMANIAN MATHEMATICAL MAGAZINE

U. 2540 In any triangle $A B C, n_{a}$ - Nagel's cevian, holds:

$$
\left(n_{a}^{4}+2\right)\left(n_{b}^{4}+2\right)\left(n_{c}^{4}+2\right) \geq 48\left(\frac{F}{R}\right)^{4}
$$

Proposed by D.M.Bătinețu-Giurgiu - Romania

Solution by Titu Zvonaru-Romania

We have $n_{a} \geq h_{a}$ and $a h_{a}=2 F$. Applying Arkady Alt's inequality:

$$
\left(x^{2}+t^{2}\right)\left(y^{2}+t^{2}\right)\left(z^{2}+t^{2}\right) \geq \frac{3}{4} t^{4}(x+y+z)^{2}
$$

(with equality if and only if $x=y=z=\frac{t}{\sqrt{2}}$), the known inequality:

$$
3\left(x^{2}+y^{2}+z^{2}\right) \geq(a+b+c)^{2}
$$

and the inequality $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{\sqrt{3}}{R}$ (item 5.23 from [1]), it follows that:

$$
\begin{aligned}
\left(n_{a}^{4}+2\right)\left(n_{b}^{4}+2\right)\left(n_{c}^{4}+2\right) & \geq\left(h_{a}^{4}+2\right)\left(h_{b}^{4}+2\right)\left(h_{c}^{4}+2\right) \geq \frac{3}{4}(\sqrt{2})^{2}\left(h_{a}^{2}+h_{b}^{2}+h_{c}^{2}\right)^{2}= \\
=3\left(\frac{4 F^{2}}{a^{2}}+\frac{4 F^{2}}{b^{2}}+\frac{4 F}{c^{2}}\right)^{2} & =48 F^{4}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)^{2} \geq 48 F^{4} \cdot \frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{4} \geq \\
& \geq 48 F^{4} \cdot \frac{1}{9}\left(\frac{\sqrt{3}}{R}\right)^{4}=48\left(\frac{F}{R}\right)^{4} .
\end{aligned}
$$

Equality holds if and only if the triangle $A B C$ is equilateral

$$
\text { and } h_{a}^{2}=1 \text { that is } a=b=c=\sqrt{\frac{2 \sqrt{3}}{3}}
$$

[1] O. Bottema, Geometric Inequalities, Groningen 1969

ARKADY ALT'S INEQUALITY

If $t, x, y, z>0$ then the following relationship holds:

$$
\begin{gathered}
\left(x^{2}+t^{2}\right)\left(y^{2}+t^{2}\right)\left(z^{2}+t^{2}\right) \geq \frac{3}{4} t^{4}(x+y+z)^{2} \\
\text { with equality if and only if } x=y=z=\frac{t}{\sqrt{2}}
\end{gathered}
$$

Proof: We have

$$
\left(x^{2}+t^{2}\right)\left(y^{2}+t^{2}\right) \geq \frac{3}{4} t^{2}\left((x+y)^{2}+t^{2}\right) \Leftrightarrow\left(x y-\frac{t^{2}}{2}\right)^{2}+\frac{t^{2}}{4}(x-y)^{2} \geq 0
$$

ROMANIAN MATHEMATICAL MAGAZINE

Applying Cauchy-Buniakovski-Schwarz inequality we obtain

$$
\begin{gathered}
\left(x^{2}+t^{2}\right)\left(y^{2}+t^{2}\right)\left(z^{2}+t^{2}\right) \geq \frac{3 t^{2}}{4}\left((x+y)^{2}+t^{2}\right)\left(t^{2}+z^{2}\right) \geq \\
\geq \frac{3 t^{2}}{4}(t(x+y)+t z)^{2}=\frac{3}{4} t^{4}(x+y+z)^{2}
\end{gathered}
$$

The equality holds if and only if $x=y=z=\frac{t}{\sqrt{2}}$.

