
 
U.2540 In any triangle 𝑨𝑩𝑪, 𝒏𝒂 - Nagel's cevian, holds: 
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We have 𝒏𝒂 ≥ 𝒉𝒂 and 𝒂𝒉𝒂 = 𝟐𝑭. Applying Arkady Alt’s inequality: 

(𝒙𝟐 + 𝒕𝟐)(𝒚𝟐 + 𝒕𝟐)(𝒛𝟐 + 𝒕𝟐) ≥
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(with equality if and only if 𝒙 = 𝒚 = 𝒛 =
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√𝟐
), the known inequality: 
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 (item 𝟓. 𝟐𝟑 from [𝟏]), it follows that:  
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Equality holds if and only if the triangle 𝑨𝑩𝑪 is equilateral 

and 𝒉𝒂
𝟐 = 𝟏 that is 𝒂 = 𝒃 = 𝒄 = √𝟐√𝟑

𝟑
. 

[𝟏] O. Bottema, Geometric Inequalities, Groningen 1969 

ARKADY ALT’S INEQUALITY 

If  𝒕, 𝒙, 𝒚, 𝒛 > 0  then the following relationship holds: 

(𝒙𝟐 + 𝒕𝟐)(𝒚𝟐 + 𝒕𝟐)(𝒛𝟐 + 𝒕𝟐) ≥
𝟑

𝟒
𝒕𝟒(𝒙 + 𝒚 + 𝒛)𝟐 

with equality if and only if  𝒙 = 𝒚 = 𝒛 =
𝒕

√𝟐
. 

Proof: We have 

(𝒙𝟐 + 𝒕𝟐)(𝒚𝟐 + 𝒕𝟐) ≥
𝟑
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𝟐
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+
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(𝒙 − 𝒚)𝟐 ≥ 𝟎. 



 
Applying Cauchy-Buniakovski-Schwarz inequality we obtain 

(𝒙𝟐 + 𝒕𝟐)(𝒚𝟐 + 𝒕𝟐)(𝒛𝟐 + 𝒕𝟐) ≥
𝟑𝒕𝟐

𝟒
((𝒙 + 𝒚)𝟐 + 𝒕𝟐)(𝒕𝟐 + 𝒛𝟐) ≥ 

≥
𝟑𝒕𝟐

𝟒
(𝒕(𝒙 + 𝒚) + 𝒕𝒛)𝟐 =

𝟑

𝟒
𝒕𝟒(𝒙 + 𝒚 + 𝒛)𝟐. 

The equality holds if and only if 𝒙 = 𝒚 = 𝒛 =
𝒕

√𝟐
. 

 


