ROMANIAN MATHEMATICAL MAGAZINE

U. 2552 If $x, y, z>0, t \geq 0$, then in any triangle $A B C$ holds

$$
\frac{x+t}{y+z+2 t} \cdot a+\frac{y+t}{z+x+2 t} \cdot b+\frac{z+t}{x+y+2 t} \cdot c \geq(27)^{1 / 4} \sqrt{F}
$$

Proposed by D.M.Bătinețu-Giurgiu - Romania

Solution by Titu Zvonaru-Romania

Denoting $m=x+t, n=y+t, q=z+t$, the given inequality becomes

$$
\begin{equation*}
\frac{m}{n+q} \cdot a+\frac{n}{q+m} \cdot b+\frac{q}{m+n} \cdot c \geq(27)^{\frac{1}{4}} \sqrt{F} \tag{1}
\end{equation*}
$$

We consider the triangle $A_{1} B_{1} C_{1}$ with the sides $\sqrt{a}, \sqrt{b}, \sqrt{c}$ and the area F_{1}.
By a theorem of Mehmet Ṣahin (Turkey), which appeared in AMM (2015),
there is true the formula:

$$
\begin{equation*}
F_{1}=\frac{1}{2} \sqrt{r\left(r_{a}+r_{b}+r_{c}\right)} \tag{2}
\end{equation*}
$$

Applying Tsintsifas' inequality for the triangle with sides $\sqrt{a}, \sqrt{b}, \sqrt{c}$, it follows that

$$
\begin{equation*}
\frac{m}{n+q} \cdot a+\frac{n}{q+m} \cdot b+\frac{q}{m+n} \cdot c \geq 2 \sqrt{3} F_{1} \tag{3}
\end{equation*}
$$

Using (1), (2), (3) and the known inequality $r_{a}+r_{b}+r_{c} \geq \sqrt{3} s$ it results that

$$
\begin{aligned}
& \frac{x+t}{y+z+2 t} \cdot a+\frac{y+t}{z+x+2 t} \cdot b+\frac{z+t}{x+y+2 t} \cdot c \geq 2 \sqrt{3} F_{1}= \\
& =2 \sqrt{3} \cdot \frac{1}{2} \sqrt{r\left(r_{a}+r_{b}+r_{c}\right)} \geq \sqrt{3} \sqrt{\sqrt{3} r s}=(27)^{\frac{1}{4}} \sqrt{F} .
\end{aligned}
$$

Equality holds if and only if $a=b=c, m=n=q$, that is $x=y=z$.

