ABOUT AN INEQUALITY BY MARIN CHIRCIU FROM R.M.M.-43

By Titu Zvonaru and Neculai Stanciu - Romania

Here we present 7 methods to solve the problem J.2491 from R.M.M. – 43, Winter Edition, 2024, p. 84.

J.2491.

$$\frac{a}{7a+b+c} + \frac{b}{a+7b+c} + \frac{c}{a+b+7c} \le \frac{1}{3}$$
 (1)

Inequality (1) can also be written in the form

$$\frac{1}{7} - \frac{a}{7a+b+c} + \frac{1}{7} - \frac{b}{a+7b+c} + \frac{1}{7} - \frac{c}{a+b+7c} \ge \frac{3}{7} - \frac{1}{3}$$

$$\frac{b+c}{7a+b+c} + \frac{c+a}{a+7b+c} + \frac{a+b}{a+b+7c} \ge \frac{2}{3} \quad (2)$$

SOLUTION 1. (REMOVE DENOMINATORS)

$$3a(a+7b+c)(a+b+7c) + 3b(a+b+7c)(7a+b+c) + 3c(7a+b+c)(a+7b+c) \ge (7a+b+c)(a+7b+c)$$

$$4(a^3 + b^3 + c^3) + 12(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2) \ge 84abc \quad (3)$$

The inequality (3) yields by AM - GM: $a^3 + b^3 + c^3 \ge 3abc$, $a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 \ge 6abc$.

SOLUTION 2. (BREAKING)

The inequality

$$\frac{a}{7a+b+c} \le \frac{5a+2b+2c}{27(a+b+c)} \tag{4}$$

can be written as

$$8a^2 - 8a(b+c) + 2(b+c)^2 \ge 0 \Leftrightarrow 2(2a - (b+c))^2 \ge 0.$$

Using the inequality (4) we obtain

$$\frac{a}{7a+b+c} + \frac{b}{a+7b+c} + \frac{c}{a+b+7c} \le$$

$$\leq \frac{5a+2b+2c}{27(a+b+c)} + \frac{5b+2c+2a}{27(a+b+c)} + \frac{5c+2a+2b}{27(a+b+c)} \leq \frac{9(a+b+c)}{27(a+b+c)} = \frac{1}{3}$$

SOLUTION 3. (HORNER BREAK)

Due to the homogeneity we can assume that a + b + c = 1. The inequality (2) becomes

$$\frac{a}{6a+1} + \frac{b}{6b+1} + \frac{c}{6c+1} \le \frac{1}{3} \quad (5)$$

We want to determine m, n such that the inequality

$$\frac{x}{6x+1} \le mx + n \quad (6)$$

To be true for any x > 0. The inequality (6) is equivalent to

$$6mx^2 + (m+6n-1)x + n \ge 0 \quad (7)$$

Bearing in mind that in the inequality (5) we have equality for $a=b=c=\frac{1}{3}$, must as the left side of the relation (7) to admit the double root $\frac{1}{3}$. Using Horner's scheme we have

$$6m m + 6n - 1 n$$

$$\frac{1}{3} 6m 3m + 6n - 1 m + 3n - \frac{1}{3}$$

$$\frac{1}{3} 6m 5m + 6n - 1$$

By relations $m + 3n - \frac{1}{3} = 0$, 5m + 6n - 1 = 0 yields $m = \frac{1}{9}$, $n = \frac{2}{27}$. The inequality (7) becomes $2(3x - 1)^2 \ge 0$.

Writing the inequality (6) for a, b, c we obtain

$$\frac{a}{6a+1} + \frac{b}{6b+1} + \frac{c}{6c+1} \le \frac{3a+2}{27} + \frac{3a+2}{27} + \frac{3c+2}{27} = \frac{3(a+b+c)+6}{27} = \frac{1}{3}$$

SOLUTION 4. (TANGENT METHOD)

Another method to determine m,n such that the inequality (6) is true for any x>0. For $x=\frac{1}{3}$ we obtain $\frac{m}{3}+n=\frac{1}{3}$. By derivation yields that $\frac{1}{(6x+1)^2}=m$; for $x=\frac{1}{3}$ we have $m=\frac{1}{9}$. For $m=\frac{1}{9}$, $n=\frac{2}{27}$, the inequality (6) becomes $2(3x-1)^2\geq 0$, evidently true.

SOLUTION 5. (BERGSTRÖM)

Using the form by (2) and applying Bergström's inequality, we obtain

$$\frac{b+c}{7a+b+c} + \frac{c+a}{a+7b+c} + \frac{a+b}{a+b+7c} =$$

$$= \frac{(b+c)^2}{(b+c)(7a+b+c)} + \frac{(c+a)^2}{(c+a)(a+7b+c)} + \frac{(a+b)^2}{(a+b)(a+b+7c)} \ge$$

$$\ge \frac{(a+b+b+c+c+a)^2}{(a+b)(a+b+7c) + (b+c)(b+c+7a) + (c+a)(c+a+7b)}.$$

It remains to prove that

$$6(a+b+c)^2 \ge (a+b)(a+b+7c) + (b+c)(b+c+7a) + (c+a)(c+a+7b)$$
$$4(a^2+b^2+c^2) \ge 4(ab+bc+ca),$$

Which is a well-known inequality.

SOLUTION 6. (SUBSTITUTIONS)

We denote x=7a+b+c, y=7b+c+a, z=7c+a+b. Solving this system, we get $a=\frac{8x-y-z}{54}$, $b=\frac{8y-z-x}{54}$, $c=\frac{8z-x-y}{54}$. The inequality (1) becomes

$$\frac{8x - y - z}{54x} + \frac{8y - z - x}{54y} + \frac{8z - x - y}{54z} \le \frac{1}{3}$$
$$24 - \left(\frac{x}{y} + \frac{y}{x} + \frac{y}{z} + \frac{z}{y} + \frac{z}{x} + \frac{x}{z}\right) \le 18$$
$$\frac{x}{y} + \frac{y}{x} + \frac{y}{z} + \frac{z}{y} + \frac{z}{x} + \frac{x}{z} \ge 6,$$

which yields by $\frac{x}{y} + \frac{y}{x} \ge 2$.

SOLUTION 7. (DELIGATION)

We have

$$\frac{a}{7a+b+c} + \frac{b}{a+7b+c} + \frac{c}{a+b+7c} - \frac{1}{3} =$$

$$= \frac{a}{7a+b+c} - \frac{1}{9} + \frac{b}{a+7b+c} - \frac{1}{9} + \frac{c}{a+b+7c} - \frac{1}{9} =$$

$$= \frac{2a-b-c}{9(7a+b+c)} + \frac{2b-c-a}{9(a+7b+c)} + \frac{2c-a-b}{9(a+b+7c)} =$$

$$= \frac{a-b}{9(7a+b+c)} + \frac{a-c}{9(7a+b+c)} + \frac{b-c}{9(a+7b+c)} + \frac{b-a}{9(a+7b+c)} + \frac{c-a}{9(a+b+7c)} + \frac{c-b}{9(a+b+7c)} =$$

$$\frac{a-b}{9} \left(\frac{1}{7a+b+c} - \frac{1}{a+7b+c} \right) + \frac{b-c}{9} \left(\frac{1}{a+7b+c} - \frac{1}{a+b+7c} \right) + \frac{c-a}{9} \left(\frac{1}{a+b+7c} - \frac{1}{7a+b+c} \right) =$$

$$= -\frac{6}{9} \left(\frac{(a-b)^2}{(7a+b+c)(a+7b+c)} + \frac{(b-c)^2}{(a+7b+c)(a+b+7c)} + \frac{(c-a)^2}{(a+b+7c)(7a+b+c)} \right) \le 0.$$

The equality occurs iff a = b = c.

REFERENCE:

Romanian Mathematical Magazine-www.ssmrmh.o