An alternating Series involving Trigamma function

Shivam Sharma

Abstract: In this paper, we revive and bring to light the alternating square version of the trigamma series of Cornel Ioan Valean
$\sum_{n=1}^{\infty}(-1)^{n-1}\left(\psi^{(1)}(n)\right)^{2}$ where $\psi^{(1)}(n)$ denotes Trigamma function
We evaluate this series by using a technique based on the computation of some special logarithmic and Di-logarithmic integrals.
let $S=\sum_{k=1}^{\infty}(-1)^{k-1}\left(\psi^{(1)}(k)\right)^{2}$
Solution: As we know, the integral representation of trigamma function

$$
\begin{equation*}
\psi^{(1)}(k)=\int_{0}^{1} \frac{x^{k-1} \ln (x)}{1-x} d x \tag{1}
\end{equation*}
$$

using (1), we get:

$$
\left(\psi^{(1)}(k)\right)^{2}=\int_{0}^{1} \int_{0}^{1} \frac{\ln (y) \ln (x)}{(1-x)(1-y)}(x y)^{k-1} d x d y
$$

Now, $\sum_{k=1}^{\infty}(-1)^{k-1}\left(\psi^{(1)}(k)\right)^{2}=\int_{0}^{1} \int_{0}^{1} \frac{\ln (y) \ln (x)}{(1-x)(1-y)} d x d y \sum_{k=1}^{\infty}(-x y)^{k-1}$
$=\int_{0}^{1} \int_{0}^{1} \frac{\ln (y) \ln (x)}{(1-x)(1-y)(1+x y)} d x d y=\int_{0}^{1} \frac{\ln (x)}{1-x}\left(\int_{0}^{1} \frac{\ln (y)}{(1-y)(1+x y)} d y\right) d x$. \qquad
Let $A=\int_{0}^{1} \frac{\ln (y)}{(1-y)(1+x y)} d y=\frac{x}{x+1} \int_{0}^{1} \frac{\ln (y)}{1+x y} d y+\frac{1}{1+x} \int_{0}^{1} \frac{\ln (y)}{1-y} d y$
$=\frac{x}{x+1} \sum_{n=1}^{\infty}(-x)^{n-1} \int_{0}^{1} y^{n-1} \ln (y) d y+\frac{1}{x+1} \sum_{n=1}^{\infty} \int_{0}^{1} y^{n-1} \ln (y) d y$
$=\frac{x}{x+1} \sum_{n=1}^{\infty}(-x)^{n-1}\left(\frac{-1}{n^{2}}\right)+\frac{1}{x+1} \sum_{n=1}^{\infty}\left(\frac{-1}{n^{2}}\right)$
$=\frac{1}{x+1} \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n^{2}}-\frac{\xi(2)}{x+1}=\frac{L i_{2}(-x)}{x+1}-\frac{\xi(2)}{x+1}=\frac{1}{1+x}\left(L i_{2}(-x)-\xi(2)\right)$
Using (3) in (2), we get,

$$
\begin{align*}
& S=\int_{0}^{1} \frac{\ln (x)}{1-x}\left(\frac{1}{1+x}\left(L i_{2}(-x)-\xi(2)\right)\right) d x=\int_{0}^{1} \frac{\ln (x) L i_{2}(-x)}{1-x^{2}} d x-\xi(2) \int_{0}^{1} \frac{\ln (x)}{1-x^{2}} d x \tag{4}\\
& \text { Let } B=\int_{0}^{1} \frac{\ln (x)}{1-x^{2}} d x=\frac{1}{2} \int_{0}^{1} \frac{\ln (x)}{1-x} d x+\frac{1}{2} \int_{0}^{1} \frac{\ln (x)}{1+x} d x \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \int_{0}^{1} x^{n-1} \ln (x) d x+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n-1} \int_{0}^{1} x^{n-1} \ln (x) d x \\
& =\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{-1}{n^{2}}\right)+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{-1}{n^{2}}\right)
\end{align*}
$$

$=\frac{-\xi(2)}{2} \frac{-\xi(2)}{4}=\frac{-3 \xi(2)}{4}=-\frac{\pi^{2}}{8}$.
Let $C=\int_{0}^{1} \frac{\ln (x) L i_{2}(-x)}{1-x^{2}} d x=\frac{1}{2} \int_{0}^{1} \frac{\ln (x) L i_{2}(-x)}{1+x} d x+\frac{1}{2} \int_{0}^{1} \frac{\ln (x) L i_{2}(-x)}{1-x} d x$
$=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} H_{n}^{(2)} \int_{0}^{1} x^{n} \ln (x) d x+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \int_{0}^{1} \frac{x^{n} \ln (x)}{1-x} d x$
$=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{n^{2}}-H_{n}^{(2)}\right) \int_{0}^{1} x^{n-1} \ln (x) d x+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(H_{n}^{(2)}-\xi(2)\right)$
$=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{n^{2}}-H_{n}^{(2)}\right)\left(\frac{-1}{n^{2}}\right)+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(H_{n}^{(2)}-\xi(2)\right)$
$=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} H_{n}^{(2)}}{n^{2}}-\frac{1}{2} L i_{4}(-1)+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} H_{n}^{(2)}}{n^{2}}-\frac{1}{2} \xi(2) L i_{2}(-1)$
$=\sum_{n=1}^{\infty} \frac{(-1)^{n} H_{n}^{(2)}}{n^{2}}+\frac{17 \pi^{4}}{1440}$
we have $\sum_{n=1}^{\infty} \frac{(-1)^{n} H_{n}^{(2)}}{n^{2}}=\frac{51 \pi^{4}}{1440}-\frac{7}{2} \ln (2) \xi(3)+\frac{\pi^{2}}{6} \ln ^{2}(2)-\frac{1}{6} \ln ^{4}(2)-4 L i_{4}\left(\frac{1}{2}\right)$
then $C=\frac{17 \pi^{4}}{360}-\frac{7}{2} \ln (2) \xi(3)+\frac{\pi^{2}}{6} \ln ^{2}(2)-\frac{1}{6} \ln ^{4}(2)-4 L i_{4}\left(\frac{1}{2}\right)$
Plugging (5) and (6) in (4), we get
$S=\frac{49 \pi^{4}}{720}-\frac{7}{2} \ln (2) \xi(3)+\frac{\pi^{2}}{6} \ln ^{2}(2)-\frac{1}{6} \ln ^{4}(2)-4 L i_{4}\left(\frac{1}{2}\right)$
References:

1. C.I VALEAN, Problem appeared first on his facebook page (2017)
2.J.D.AURIZIO, Problem proposed on MSE by him on behalf of C.L VALEAN (2017)
(Received April 05, 2018)

Shivam Sharma

Undergraduate student

Department of Mathematics
University of Delhi
2/378 Nawabganj, Kanpur
208002, Uttar Pradesh, India
e-mail: shivamsharma894@gmail.com

