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Abstract

In this article, we intend to formulate the derangement function D, for n > 2,
by using two approaches, i.e. pure combinatorial approach and abstract algebraic
approach through symmetric group. Then, we get two formulas of D,, and find a new
interesting identity.
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1 Introduction

Firstly, we suppose to have n baskets respectively numbered by 1,2, 3,...,n and n balls also
respectively numbered by 1,2, 3,...,n. Let us call basket k as a basket numbered by k. Call
similarly for ball k. In the origin, every basket is filled by one ball in such a way that basket
k is filled by ball k. Suppose that we define a movement as our way to shift the ball £ from
basket k to basket f(k) (Vk = 1,2,...,n) exactly once so that {f(1), f(2),...,f(n)} =
{1,2,...,n}. In other word, f is a bijective mapping from {1,2,... ,n} to itself. The
number of possible movements so that, in the last position, ball £ does not lie inside the
basket k (i.e. f(k) #k, Yk =1,2,...,n) is denoted by D,,, formally called as derangement
function of n.

D,, is defined as the number of permutations of the n objects in which no object appears
in its original position. In abstract algebra, these n distinct objects can be figured as a set
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of n elements {1,2,...,n}. The group of all bijective mappings from {1,2,...,n} to itself
with the mapping composition as the group operation is called symmetric group S,. An
element of 5, is called a permutation. Therefore, D,, is the number of permutations in S,
in which the permutation has no fixed point.

In this article, we emphasize to find the formulas of D,, for n > 2 (because when n = 1,
it is trivial that D; = 0). There are two great formulas of D,,. The first one is

— (=1
D,=nl>" ) ¥ > 2
k=2 )

and the second one is

1
D, =n! , Vn > 2
Z 2$23$3...nznx2!x3!...xn! -
(z2,23,...,xn ) EHp
where H, = {(x9,23,...,2,) | 200 + 323+ -+ - + nx, = n; 9, 23,...,2, € No}.
The first formula is obtained by using pure combinatorial approach. While, the second
formula is obtained by using abstract algebraic methods through symmetric group concepts.

2 Combinatorial Approach

Consider n baskets (basket 1, basket 2, ..., basket n) and n balls (ball 1, ball 2, ..., ball
n) so that ball k lies inside the basket k. We will do a movement once for these balls. We
have known that D,, is the number of possible movements so that, in the last position, ball
k does not lie inside the basket k again (Vk =1,2,...,n).

Suppose that for k € {1,2,...,n}, Py is defined as the set of all possible movements in
such a way that after the movement the ball £ still lies inside the basket k, i.e., ball k does
not move. According to Inclusion-Exclusion Principle, we have

n

IPLUR U UP,[ =) (=)' |[PnPyn--NEy (1)

k=1

where

Y IANPN-- NP = > |P,, NPy, N---NP,]|
1<a1<a2<-<ap<n;
a1,a2,...,ak€Z+
For every positive integers aj, as, ..., a; with1 < a; < as < --- <ap <n, P,NFP,N---NP,,
is the set of movements for which at least ball ay, ball as, ..., ball a; do not move.



Therefore, |P,, NP, N---NP, | =(n—k)! as the number of possibilities the other n — k

balls (besides ball ay, ball as, ..., ball a) shift their positions. Consequently, for every
ke{l,2,...,n},
Y IPNRN--NPy| = > |P,, NP, N---NP,]

1<a1<a2<--<ap<n;
a1,a2,...,a, €7+

= > (n—k)!

1<a1 <az2<--<arp<n;
a1,a2,...,a,€Z+

- <Z) (n— k)!

n!

k!
By equation (1), we get

|[PLUP,U--UP,[ =) (=)' Y |[Pn PN NPy
k=1

Since PLUP,U---U P, is the set of all movements for which there is a ball that does
not move, so (PLUP,U---UP,)¢ is the set of all movements so that no ball does not move.
Then we obtain

Dn:‘(PlLJPQUUPn)C’

=n! En (=1 Vn € 77"
N 'k k7
=0

and the following theorem follows.

Theorem 2.1. For all integers n > 2, we have

n _1 k
k=2 '



3 Symmetric Group Approach

We remember again that the n'” symmetric group S, is the group of all bijective maps from

{1,2,...,n} to {1,2,...,n} with the operation of map composition. Every elements of S,

is called permutation. A permutation f in S, is called k — cycle (or cycle of length k) iff

there exists exactly k distinct numbers aq, as, ..., a; in {1,2,...,n} in such a way that
flar) = as, flag) =as, ------ fla—1) = ar, flar) =

and f(z) = xforallz € {1,2,...,n}\{a1,as,...,ar}. In this case, we can write the notation

f=(a1 ag -+ ax_1 ag). Two cycles (z1 xo---xx) and (y1 yo---y;) are called disjoint iff

{ay,as, ..., a1} Ny, 92, -,y } = 0.
Besides that, when we have a € {1,2,...,n} and f € S, then f fixes a iff f(a) = a and f

moves a iff f(a) # a. If f fixes a, then a is a fixed point of f.

Lemma 3.1. A permutation can be represented as the product of disjoint cycles. The ex-
pression of this product can be called as the disjoint cycles form. The disjoint cycles form of
every permutation is unique.

Example 3.2. The disjoint cycles form of permutations
1 2 3 4 123456 1 2
7T“(3214>€S4’ T—(165324>€Sﬁ’ ¢_(72

are (1 3)(2)(4), (1)(2 6 4 3 5), (1 7 8 9)(2)(3 4)(5)(6) respectively.

345678965
4356 8 91 9

Tn

Definition 3.3 (Cycle Pattern). Cycle pattern of a permutation f in S, is 171.272..-. .n
iff the disjoint cycles form of f contains 1 1-cycles, xo 2-cycles, x3 3-cycles, ..., x, n-cycles.
Moreover, n = x1 + 2x9 + 323+ -+ - + nx, with x1,xs,...,2, € Nj.

Example 3.4. The cycle patterns of permutations
1 2 3 4 1 23 456 1 2 3 4
7T:(3214>ES4’ TZ(165324>656’ ¢:(7243

are 1221, 1151, and 13.2'.4' respectively.
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Theorem 3.5. The number of permutations in S, with cycle pattern 1%1.2%2. ... n* is

n!

171272 ..oy lpl oo g

Proof. Let f € S, has cycle pattern 1¥1.2%2. ... .n®"*. So, the disjoint cycles form of f contains
x1 1-cycles, x9 2-cycles, ..., x, n-cycles. We will find the number of such possible f, in S,,.

Let us imagine a k-cycle by a cycle table with having & identic chairs surrounding it.
Therefore, we can suppose the disjoint cycles form of f as similar as considering xj cycle
tables each is surrounded by k chairs (Vk = 1,2,...,n). The total of chairs in overall are
n = x,+2xy+---+nz,. Welet to imagine the numbers 1,2,...,n as n distinct people and
these n people will be placed to n provided chairs in such a way that one chair is placed by
one person. We intend to design these n chairs identic and these z; + x5 + - - - 4+ x,, cycle
tables identic too. Obviously, the number of f € S, (with cycle pattern 1%1.2%2. ... .n) is
the number of way to position n people in the provided n chairs.

Next, let us consider that there are x; cycle tables surrounded by 1 chair, x5 cycle tables
surrounded by 2 chairs, x3 cycle tables surrounded by 3 chairs, ... ,and z, cycle tables
surrounded by n chairs.

If we assume that all tables are different and the permutations of people positions in a
one same table is not noticed, so the number of way to positioning these n people to sit

down at n chairs is \
n

(e @l

Suppose we remove the assumption ”all tables are different”. Let us consider any k &€
{1,2,...,n} and consider z;, cycles tables with each of these is surrounded by k people in
the chairs. So there are x! possibilities to permutating z, groups of k people cycling
tables. Suppose we also remove the assumption ”the permutations of people positions in a
one same table is not noticed”, so the number of permutations of k people cycling a table
with k chairs is (k — 1)L

By seeing that all the tables are identic and the people (in a same table) can permutate
their positions cycling their own tables, the actual number of possibilities to position these
n people is

M=

M % m X (0N (1) - - ((n — 1))
n! 1 - - "
B IETE I i i ie (O (1172 .. ((n — 1)1
n!
T Qmge. .. nenxylzg! -,

In conclusion, {msm s 18 the number of permutations in S,, with having cycle

pattern 1%1.2%2 ... n%, ]




Definition 3.6. Suppose that for every integers n > 2, we have

H, = {(z,x3,...,2,) | 202+ 323+ - -+ + nx, =n; x9,23,...,7, € Ng}.

In symmetric group S,, with n > 2, a permutation with no fixed point is a permutation
whose the product of disjoint cycles does not contain 1-cycle. Equivalently, this permutation
has cycle pattern 2¥2.3% - .- .n* where 2x5 + 3x3+---+nxr, =n and x9,23,...,2, € Nj.
The number of such permutations (in S,) is

n!
Z 2v23%s .. pTngylagl -z

(53275537“"171)6[{71

and this expression represents D,,.

Theorem 3.7. For every integers n > 2, the number of permutations in S, which has no
fixed point is

1
D, =n! :
" Z 282373 . .. pETngylagl - xy,!

(z2,23,...,0n)EHp,

4 Conclusion

By combining Theorem 2.1 and Theorem 3.7, we have the following formulas of derangement
function:

— (1)
Dy=nl> o W >2
k=2 ’

and

1
D= Vn > 2
! (z2 I3ZI YeH 2x2 373 "‘nx"$2!$3!---:1cn!’ =

where H,, = {(x9,x3,...,2,) | 209 + 323+ -+ + nw, =n; x9,23,..., 7, € No}.
These two formulas are equivalent. By comparing them, we get a new identity:

>ere % : > 2 @)
k! 222373 ... pIngylysl .oyl -

k=2 (2,23,....,8n)EHn




Additional Comment.
Observe that by setting n going to +o0 in equation (2), we get

! > 1 . z”: (=D" _1
im = jm ~ e
N300 . 2%23T3 . . . nx”l'g!l'g! R gjnl n—00 p k! e

where e is Euler number.
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