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Abstract

In this article, we intend to formulate the derangement function Dn for n ≥ 2,
by using two approaches, i.e. pure combinatorial approach and abstract algebraic
approach through symmetric group. Then, we get two formulas of Dn and find a new
interesting identity.
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1 Introduction

Firstly, we suppose to have n baskets respectively numbered by 1, 2, 3, . . . , n and n balls also
respectively numbered by 1, 2, 3, . . . , n. Let us call basket k as a basket numbered by k. Call
similarly for ball k. In the origin, every basket is filled by one ball in such a way that basket
k is filled by ball k. Suppose that we define a movement as our way to shift the ball k from
basket k to basket f(k) (∀k = 1, 2, . . . , n) exactly once so that {f(1), f(2), . . . , f(n)} =
{1, 2, . . . , n}. In other word, f is a bijective mapping from {1, 2, . . . , n} to itself. The
number of possible movements so that, in the last position, ball k does not lie inside the
basket k (i.e. f(k) ̸= k, ∀k = 1, 2, . . . , n) is denoted by Dn, formally called as derangement
function of n.

Dn is defined as the number of permutations of the n objects in which no object appears
in its original position. In abstract algebra, these n distinct objects can be figured as a set
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of n elements {1, 2, . . . , n}. The group of all bijective mappings from {1, 2, . . . , n} to itself
with the mapping composition as the group operation is called symmetric group Sn. An
element of Sn is called a permutation. Therefore, Dn is the number of permutations in Sn

in which the permutation has no fixed point.

In this article, we emphasize to find the formulas of Dn for n ≥ 2 (because when n = 1,
it is trivial that D1 = 0). There are two great formulas of Dn. The first one is

Dn = n!
n∑

k=2

(−1)k

k!
, ∀n ≥ 2

and the second one is

Dn = n!
∑

(x2,x3,...,xn)∈Hn

1

2x23x3 · · ·nxnx2!x3! · · ·xn!
, ∀n ≥ 2

where Hn = {(x2, x3, . . . , xn) | 2x2 + 3x3 + · · ·+ nxn = n; x2, x3, . . . , xn ∈ N0}.
The first formula is obtained by using pure combinatorial approach. While, the second
formula is obtained by using abstract algebraic methods through symmetric group concepts.

2 Combinatorial Approach

Consider n baskets (basket 1, basket 2, . . ., basket n) and n balls (ball 1, ball 2, . . ., ball
n) so that ball k lies inside the basket k. We will do a movement once for these balls. We
have known that Dn is the number of possible movements so that, in the last position, ball
k does not lie inside the basket k again (∀k = 1, 2, . . . , n).

Suppose that for k ∈ {1, 2, . . . , n}, Pk is defined as the set of all possible movements in
such a way that after the movement the ball k still lies inside the basket k, i.e., ball k does
not move. According to Inclusion-Exclusion Principle, we have

|P1 ∪ P2 ∪ · · · ∪ Pn| =
n∑

k=1

(−1)k+1
∑

|P1 ∩ P2 ∩ · · · ∩ Pk| (1)

where ∑
|P1 ∩ P2 ∩ · · · ∩ Pk| =

∑
1≤a1<a2<···<ak≤n;

a1,a2,...,ak∈Z+

|Pa1 ∩ Pa2 ∩ · · · ∩ Pak |

For every positive integers a1, a2, . . . , ak with 1 ≤ a1 < a2 < · · · < ak ≤ n, Pa1∩Pa2∩· · ·∩Pak

is the set of movements for which at least ball a1, ball a2, . . ., ball ak do not move.
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Therefore, |Pa1 ∩ Pa2 ∩ · · · ∩ Pak | = (n− k)! as the number of possibilities the other n− k
balls (besides ball a1, ball a2, . . ., ball ak) shift their positions. Consequently, for every
k ∈ {1, 2, . . . , n},∑

|P1 ∩ P2 ∩ · · · ∩ Pk| =
∑

1≤a1<a2<···<ak≤n;
a1,a2,...,ak∈Z+

|Pa1 ∩ Pa2 ∩ · · · ∩ Pak |

=
∑

1≤a1<a2<···<ak≤n;
a1,a2,...,ak∈Z+

(n− k)!

=

(
n

k

)
(n− k)!

=
n!

k!

By equation (1), we get

|P1 ∪ P2 ∪ · · · ∪ Pn| =
n∑

k=1

(−1)k+1
∑

|P1 ∩ P2 ∩ · · · ∩ Pk|

= n!
n∑

k=1

(−1)k+1

k!

Since P1 ∪ P2 ∪ · · · ∪ Pn is the set of all movements for which there is a ball that does
not move, so (P1∪P2∪ · · · ∪Pn)

c is the set of all movements so that no ball does not move.
Then we obtain

Dn = |(P1 ∪ P2 ∪ · · · ∪ Pn)
c|

= n!− |P1 ∪ P2 ∪ · · · ∪ Pn|

= n!
n∑

k=0

(−1)k

k!
, ∀n ∈ Z+

and the following theorem follows.

Theorem 2.1. For all integers n ≥ 2, we have

Dn = n!
n∑

k=2

(−1)k

k!
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3 Symmetric Group Approach

We remember again that the nth symmetric group Sn is the group of all bijective maps from
{1, 2, . . . , n} to {1, 2, . . . , n} with the operation of map composition. Every elements of Sn

is called permutation. A permutation f in Sn is called k − cycle (or cycle of length k) iff
there exists exactly k distinct numbers a1, a2, . . . , ak in {1, 2, . . . , n} in such a way that

f(a1) = a2, f(a2) = a3, · · · · · · f(ak−1) = ak, f(ak) = a1

and f(x) = x for all x ∈ {1, 2, . . . , n}\{a1, a2, . . . , ak}. In this case, we can write the notation
f = (a1 a2 · · · ak−1 ak). Two cycles (x1 x2 · · ·xk) and (y1 y2 · · · yl) are called disjoint iff
{a1, a2, . . . , ak} ∩ {y1, y2, . . . , yl} = ∅.
Besides that, when we have a ∈ {1, 2, . . . , n} and f ∈ Sn, then f fixes a iff f(a) = a and f
moves a iff f(a) ̸= a. If f fixes a, then a is a fixed point of f .

Lemma 3.1. A permutation can be represented as the product of disjoint cycles. The ex-
pression of this product can be called as the disjoint cycles form. The disjoint cycles form of
every permutation is unique.

Example 3.2. The disjoint cycles form of permutations

π =

(
1 2 3 4
3 2 1 4

)
∈ S4, τ =

(
1 2 3 4 5 6
1 6 5 3 2 4

)
∈ S6, ϕ =

(
1 2 3 4 5 6 7 8 9
7 2 4 3 5 6 8 9 1

)
∈ S9

are (1 3)(2)(4), (1)(2 6 4 3 5), (1 7 8 9)(2)(3 4)(5)(6) respectively.

Definition 3.3 (Cycle Pattern). Cycle pattern of a permutation f in Sn is 1x1 .2x2 . · · · .nxn

iff the disjoint cycles form of f contains x1 1-cycles, x2 2-cycles, x3 3-cycles, . . ., xn n-cycles.
Moreover, n = x1 + 2x2 + 3x3 + · · ·+ nxn with x1, x2, . . . , xn ∈ N0.

Example 3.4. The cycle patterns of permutations

π =

(
1 2 3 4
3 2 1 4

)
∈ S4, τ =

(
1 2 3 4 5 6
1 6 5 3 2 4

)
∈ S6, ϕ =

(
1 2 3 4 5 6 7 8 9
7 2 4 3 5 6 8 9 1

)
∈ S9

are 12.21, 11.51, and 13.21.41 respectively.
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Theorem 3.5. The number of permutations in Sn with cycle pattern 1x1 .2x2 . · · · .nxn is

n!

1x12x2 · · ·nxnx1!x2! · · ·xn!
.

Proof. Let f ∈ Sn has cycle pattern 1x1 .2x2 . · · · .nxn . So, the disjoint cycles form of f contains
x1 1-cycles, x2 2-cycles, . . ., xn n-cycles. We will find the number of such possible f , in Sn.

Let us imagine a k-cycle by a cycle table with having k identic chairs surrounding it.
Therefore, we can suppose the disjoint cycles form of f as similar as considering xk cycle
tables each is surrounded by k chairs (∀k = 1, 2, . . . , n). The total of chairs in overall are
n = x1+2x2+ · · ·+nxn. We let to imagine the numbers 1, 2, . . . , n as n distinct people and
these n people will be placed to n provided chairs in such a way that one chair is placed by
one person. We intend to design these n chairs identic and these x1 + x2 + · · · + xn cycle
tables identic too. Obviously, the number of f ∈ Sn (with cycle pattern 1x1 .2x2 . · · · .nxn) is
the number of way to position n people in the provided n chairs.

Next, let us consider that there are x1 cycle tables surrounded by 1 chair, x2 cycle tables
surrounded by 2 chairs, x3 cycle tables surrounded by 3 chairs, . . . ,and xn cycle tables
surrounded by n chairs.

If we assume that all tables are different and the permutations of people positions in a
one same table is not noticed, so the number of way to positioning these n people to sit
down at n chairs is

M =
n!

(1!)x1(2!)x2 · · · (n!)xn
.

Suppose we remove the assumption ”all tables are different”. Let us consider any k ∈
{1, 2, . . . , n} and consider xk cycles tables with each of these is surrounded by k people in
the chairs. So there are xk! possibilities to permutating xk groups of k people cycling xk

tables. Suppose we also remove the assumption ”the permutations of people positions in a
one same table is not noticed”, so the number of permutations of k people cycling a table
with k chairs is (k − 1)!.

By seeing that all the tables are identic and the people (in a same table) can permutate
their positions cycling their own tables, the actual number of possibilities to position these
n people is

M × 1

x1!x2! · · ·xn!
× (0!)x1(1!)x2 · · · ((n− 1)!)xn

=
n!

(1!)x1(2!)x2 · · · (n!)xn
× 1

x1!x2! · · ·xn!
× (0!)x1(1!)x2 · · · ((n− 1)!)xn

=
n!

1x12x2 · · ·nxnx1!x2! · · ·xn!
.

In conclusion, n!
1x12x2 ···nxnx1!x2!···xn!

is the number of permutations in Sn with having cycle
pattern 1x1 .2x2 . · · · .nxn .
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Definition 3.6. Suppose that for every integers n ≥ 2, we have

Hn = {(x2, x3, . . . , xn) | 2x2 + 3x3 + · · ·+ nxn = n; x2, x3, . . . , xn ∈ N0}.

In symmetric group Sn with n ≥ 2, a permutation with no fixed point is a permutation
whose the product of disjoint cycles does not contain 1-cycle. Equivalently, this permutation
has cycle pattern 2x2 .3x3 · · · .nxn where 2x2 + 3x3 + · · ·+ nxn = n and x2, x3, . . . , xn ∈ N0.
The number of such permutations (in Sn) is∑

(x2,x3,...,xn)∈Hn

n!

2x23x3 · · ·nxnx2!x3! · · ·xn!

and this expression represents Dn.

Theorem 3.7. For every integers n ≥ 2, the number of permutations in Sn which has no
fixed point is

Dn = n!
∑

(x2,x3,...,xn)∈Hn

1

2x23x3 · · ·nxnx2!x3! · · ·xn!
.

4 Conclusion

By combining Theorem 2.1 and Theorem 3.7, we have the following formulas of derangement
function:

Dn = n!
n∑

k=2

(−1)k

k!
, ∀n ≥ 2

and

Dn = n!
∑

(x2,x3,...,xn)∈Hn

1

2x23x3 · · ·nxnx2!x3! · · ·xn!
, ∀n ≥ 2

where Hn = {(x2, x3, . . . , xn) | 2x2 + 3x3 + · · ·+ nxn = n; x2, x3, . . . , xn ∈ N0}.
These two formulas are equivalent. By comparing them, we get a new identity:

n∑
k=2

(−1)k

k!
=

∑
(x2,x3,...,xn)∈Hn

1

2x23x3 · · ·nxnx2!x3! · · ·xn!
, ∀n ≥ 2 (2)
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Additional Comment.
Observe that by setting n going to +∞ in equation (2), we get

lim
n→∞

∑
(x2,x3,...,xn)∈Hn

1

2x23x3 · · ·nxnx2!x3! · · ·xn!
= lim

n→∞

n∑
k=2

(−1)k

k!
=

1

e

where e is Euler number.
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