DANIEL SITARU - ROMANIA

5757. Suppose $f:[0,1]\to\mathbb{R}$ is continuous and

$$\int_0^1 f(x)dx = \frac{1}{2}$$

Show that

$$2 + \int_0^1 f^2(x)dx \ge 6 \int_0^1 x f(x)dx$$

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY. We prove the more general inequality

(1)
$$\frac{1}{4} \int_0^1 f^2(x) dx + 2 \left(\int_0^1 f(x) dx \right)^2 \ge 3 \int_0^1 f(x) dx \cdot \int_0^1 x f(x) dx$$

Then substituting the given integral value and clearing fractions gives us the desired inequality.

Now set $\int_0^1 f(x)dx = t$ and consider the quadratic polynomial

(2)
$$t^2 - 3\left(\int_0^1 \left(x - \frac{1}{3}\right) f(x)\right) t + \frac{1}{4} \int_0^1 f^2(x) dx$$

The discriminant of this polynomial is

$$D = 9\left(\int_0^1 \left(x - \frac{1}{3}\right) f(x) dx\right)^2 - \int_0^1 f^2(x) dx$$

The CBS inequality yields

$$D \le 9 \cdot \int_0^1 \left(x - \frac{1}{3} \right)^2 dx \cdot \int_0^1 f^2(x) dx - \int_0^1 f^2(x) dx$$
$$= \int_0^1 f^2(x) dx - \int_0^1 f^2(x) dx = 0.$$

Since $D \leq 0$ and the coefficient of t^2 in (2) is positive, we see that the quadratic is nonnegative for all values of t. Therefore

$$\left(\int_{0}^{1} f(x)dx\right)^{2} + \frac{1}{4} \int_{0}^{1} f^{2}(x)dx \ge 3\left(\int_{0}^{1} \left(x - \frac{1}{3}\right)f(x)dx\right) \cdot \int_{0}^{1} f(x)dx$$

$$= 3\left(\int_{0}^{1} x f(x)dx - \frac{1}{3} \int_{0}^{1} f(x)dx\right) \cdot \int_{0}^{1} f(x)dx$$

$$= 3\int_{0}^{1} x f(x)dx \cdot \int_{0}^{1} f(x)dx - \left(\int_{0}^{1} f(x)dx\right)^{2}.$$

which gives us (1).

Solution 2 by Perfetti Paolo, dipartimento de matematica Universita di "Tor Vergata", Roma, Italy.

$$\int_0^1 (f - 3x + a)^2 dx = \int_0^1 (f^2 - 6xf + 9x^2 + a^2 + 2af - 6xa) dx \ge 0$$

Thus

$$\int_{0}^{1} (f^{2} - 6xf)dx \ge -3 - a^{2} - a + 3a \ge -2 \Leftrightarrow (a - 1)^{2} \le 0 \Leftrightarrow a = 1$$

and this concludes the proof.

Solution 3 by Albert Stadler, Herrliberg, Switzerland. Suppose $f:[0,1]\to\mathbb{R}$ is continuous and $\int_0^1 f(x)dx=\frac{1}{2}$. Show that

$$2 + \int_0^1 f^2(x)dx \ge 6 \int_0^1 x f(x)dx.$$

Solution of the problem

We have

$$0 \le \int_0^1 (f(x) - 3x + 1)^2 dx = \int_0^1 (f^2(x) + 9x^2 + 1 - 6xf(x) + 2f(x) - 6x) dx =$$
$$= \int_0^1 f^2(x) dx + 3 + 1 - 6 \int_0^1 x f(x) dx + 1 - 3$$

which implies

$$2 + \int_0^1 f^2(x) dx \ge 6 \int_0^1 x f(x) dx.$$

Solution 4 by Moti Levy, Rehovot, Israel.

Let $F(x) := \int_0^x f(t)dt$. After integrations by parts,

(3)
$$\int_0^1 x f(x) dx = x F(x) \Big]_0^1 - \int_0^1 F(x) dx = \frac{1}{2} - \int_0^1 F(x) dx$$

Substituting (3) in the original inequality we get

$$2 + \int_0^1 \left(F'(x) \right)^2 dx \ge 3 - 6 \int_0^1 F(x) dx \int_0^1 x f(x) dx,$$

or,

$$\int_0^1 \left(6F(x) + \left(F'(x)\right)^2\right) dx \ge 1$$

Let

$$J(F) := \int_0^1 \left(6F(x) + \left(F'(x) \right)^2 \right) dx \ge 1,$$

then the original inequality is equivalent to the statement that the functional J(F)is grater than or equal to 1 for every differentiable function F(x), which satisfies the boundary conditions F(0) = 0 and $F(1) = \frac{1}{2}$.

Every differentiable function F(x), which satisfies the boundary conditions F(0) = 0 and $F(1) = \frac{1}{2}$ can be expressed as $F(x) = \frac{3}{2}x^2 - x + \eta(x)$, where $\eta(x)$ is

= 0 and
$$F(1) = \frac{1}{2}$$
 can be expressed as $F(x) = \frac{3}{2}x^2 - x + \eta(x)$, where $\eta(x)$

5757 3

defferentiable function in the interval (0,1) and $\eta(0) = \eta(1) = 0$. Then

$$J\left(\frac{3}{2}x^2 - x + \eta(x)\right) = \int_0^1 \left(6\left(\frac{3}{2}x^2 - x + \eta(x)\right) + \left(3x - 1 + \eta(x)\right)^2\right) dx$$
$$= \int_0^1 \left(6\left(\frac{3}{2}x^2 - x\right) + (3x - 1)^2\right) dx + \int_0^1 6\eta(x) + 2(3x - 1)\eta'(x) + (\eta'(x))^2 dx$$
$$= 1 + \int_0^1 6\eta(x) + 2(3x - 1)\eta(x) + (\eta'(x))^2 dx$$

Applying integration by parts, we obtain

$$J\left(\frac{3}{2}x^2 - x + \eta(x)\right) = 1 + \int_0^1 (\eta'(x))^2 dx$$

It follows that $JF(x) \ge 1$ for every differentialbe function F(x) which satisfies F(0) = 0 and $F(1) = \frac{1}{2}$. The functional J(F) attains its minimum when $\eta'(x) = 0$ which implies (together with the boundary conditions $\eta(0) = \eta(1) = 0$ that $\eta(x) = 0$ in (0,1).

Solution 5 by Michel Bataille, Rouen, France.

Let $I = \int_0^1 (3x-1)f(x)dx$. Then, we have

$$6\int_0^1 x f(x) dx = 2I + 2\int_0^1 f(x) dx = 2I + 1.$$

On the other hand, since $\int_0^1 (3x-1)^2 dx = \int_0^1 (9x^2-6x+1) dx = 1$, the Cauchy-Schwarz inequality gives

$$\int_0^1 f^2(x)dx = \left(\int_0^1 (3x-1)^2 dx\right) \left(\int_0^1 f^2(x)dx\right) \ge \left(\int_0^1 (3x-1)f(x)dx\right)^2 = I^2$$

As a result, we obtain

$$2 + \int_0^1 f^2(x)dx - 6\int_0^1 x f(x)dx \ge 2 + I^2 - 2I - 1 = (I - 1)^2 \ge 0$$

and the desired inequality follows.

Solution 6 by proposer.

$$2 + \int_0^1 f^2(x)dx \ge 6 \int_0^1 x f(x)dx$$

$$\int_0^1 f^2(x)dx - 6 \int_0^1 x f(x)dx + 1 + 3 - 3 + 1 \ge 0$$

$$\int_0^1 f^2(x)dx - 6 \int_0^1 x f(x)dx + 2 \cdot \frac{1}{2} + 9 \cdot \frac{1}{3} - 6 \cdot \frac{1}{2} + 1 \ge 0$$

$$\int_0^1 f^2(x)dx - 6 \int_0^1 x f(x)dx + 2 \int_0^1 f(x)dx + \int_0^1 (9x^2 - 6x + 1)dx \ge 0$$

$$\int_0^1 f^2(x)dx - 2 \int_0^1 (3x - 1)f(x)dx + \int_0^1 (3x - 1)^2 dx \ge 0$$

$$\int_0^1 (f(x) - (3x - 1))^2 dx \ge 0$$

Equality holds for f(x) = 3x - 1.

$$LHS = 2 + \int_0^1 (3x - 1)^2 dx = 2 + 9 \cdot \frac{1}{3} - 6 \cdot \frac{1}{2} + 1 = 6 - 3 = 3$$

$$RHS = 6 \int_0^1 x(3x - 1) dx = 18 \cdot \frac{1}{3} - 6 \cdot \frac{1}{2} = 6 - 3 = 3$$

Mathematics Department, National Economic College "Theodor Costescu", Drobeta Turnu - Severin, Romania

Email address: dansitaru63@yahoo.com