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PREFACE 
 

Solving problems is an integral and inseparable part of any 
Mathematical learning process. The present book ‘Olympiad 
Problems ‘ is aimed to be a step in this direction. The book 
contains over 230 carefully crafted fully solved problems 

from Algebra. However, the Problems are neither calibrated 
nor arranged in any order of difficulty. The problems range 
from simple to very difficult.Some of these problems have 

already appeared in the online Romanian Mathematical 
Magazine (RMM). The RMM team consists of more than 

9000 mathematics experts, lovers and enthusiasts. 
Whenever a problem is proposed in RMM, several group 

members put up their untiring efforts to provide different 
solutions to the problem. More than one solution to a 

problem shows the intrinsic beauty of mathematics - that 
we can reach the same result by following different 

approaches.The book ‘Olympiad Problems‘ provides a good 
opportunity for Mathematical lovers to learn some of the 

new techniques to solve problems. How a simple 
substitution, use of an algebraic identity or geometric 
visualisation reduces a daunting problem to a simple 

problem are very well illustrated through solutions to the 
problems in the book.It is hoped that the readers will enrich 
their mathematical knowledge by using the book. Regarding 
the misprints and errors in the book, we hope there is none 
but the experience of last several years suggests otherwise. 
Whenever you come across an error or misprint in the book, 

you are requested to bring it to our notice. 
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EQUATIONS 

1.1 Solve for real numbers: 

     
 
       

 
      

Solution:  

       
 
       

 
      

         
 

       
 

       : false 

If    , we notice that     and         satisfies the equation. 

Let     
  (    )  ( )       

 

  

We prove that   is strictly decreasing on (  √ ) and strictly increasing on 

(√    ), where           
           ( )      

 

  

Suppose that √       ( )   ( )  (     )  ( 
 

   
 

 *   

   (      )   
 
 4 

 (   )
   5 

But       ( )   ( )    (      )   
 

 (      )   

 (      ) (    
 

 *

       
 

 
 √   

?   ( )   ( )     ( )   ( )    is strictly 

increasing on (√    ) . Similar for (  √ )   ( )       
 

  is strictly 

convexe (1) 

Let     
  (    )  ( )     

 

       
 

      
 

     
 

           

 ( )     
 
  

 

  
 ( )     

 
    .  

 

  
/ 

 

   
 ( )     .  
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    ⏟      
  

.  
 

  
  

 

  
/⏟          

  
 

  
  

 

  
 
        

  
  

}     ( )      is strictly convexe (2) 

   ( )   ( ), which is a sum of 2 strictly convexe functions    has 

maximum 2 solutions which are      and         

 

1.2 Find (  )    such that: 

∑  .
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Solution:  
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We know .
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Thus a possible sequence is            . 

 

1.3 Solve for natural numbers: 
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Solution:  
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1.4 Solve for natural numbers: 

(   ) 
     (   ) 

 
 (   ) 

 
     

Solution: 

(   ) 
     

( )
(   ) 

 
(   ) 

 
 

(1) (     )   (   )      (   )      (   )      .
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   (
   

   
*        (

   

   
*  
( )

  (     ) 

Also,              
   

   
   

   (
   

   
*        (

   

   
*  
(  )

   (     ) 

(i) (ii)  LHS of (1)  , equality if       

and   LHS           (Answer) 

 

1.5 Find all         such that:       (   ) 

Solution:  

Rearranging we have:                 (*) 

Solving quadratically we have:   
    √       

  
  

 

 
 
√       

  
 

Note that         which implies   must be an even integer. Set     

gives us      
√         

  
. It is worthy to note that: 

 
√         

  
     √              

Squaring on both sides yields                      

For all            which tells us that  

    is the possible value. Plugging in (*) we get 

            (   )    

{
             ( )

         ( )
 

Squaring on both sides yields                      

For all            which tells us that     is the possible value. 

Plugging in (*) we get              (   )    

{
             ( )

         ( )
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Further squaring in 2nd equation we observe  

                     

As                  . Hence           is impossible  

which proves there exists no solution for       in  . 

1.6 Solve for natural numbers: 

          √      

Solution:  

          √       (   )     
     

 √ (   )     

  (√     )   √   (   ) √      √   (   ) 

If                                 

  sol. (     ) (     ) (     ) (     ) (     ) (     ) 

(     ) (     ) (     )              

If                       false. 

If                          √     false. 

If                          √      false. 

If                             true. 

                    false   sol. (     ) (     ) (     ) 

√      √   (   )  √    (   )      

 √      
 

√   
   

 

√ 
       

 √                *     + 

            

If           or    , see above 

If                    √     

    √         √             
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  (    )    
 

 
 false. If     or     see above. 

If                       √     

                      (   )(    )     

If           
 

 
 false.  If                       

            true. 

1.7 Find all pairs (   ) of positive integers for  

                     

Solution:  

Given:                      

which further can be written as  (   )       

shows that       (       )    

is always an odd integer where left hand expression is an even integer. Thus, 

there is no solution in   . 

1.8 Find the number of ordered quadruples of positive integers 

(       ) such that the following holds:           , and     

are primes. 

Solution:  

The given equation is equivalent to   (   )(   )(     )    . As   

and   are primes, there exist a bijection such that  

(                  )  (         ). 

For    , the possible pair should be (   )  (   ) or  

(   )  (   ). 

Both cases result in(                 )  (         ) (contradictory 

to the bijection). In other words, the problem has no solution. 
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1.9 Solve for natural numbers: 

                    

Solution:  

                          

If        , true. 

If    . Or        prime number, 

    (      )    (      )    (      )(    ) 

   (      ) (    )   

    (   )(      )(      ) 

If               false    (   ) 

If                             
   
   

 false 

   (      ) 

If                         
   
   

 false  

   (      )   The number   is a perfect square,     perfect square 

 (   )(      )(      )   perfect square,  

   perfect square          

If         prime,           . If                  false  

   (      ). If          and               and  

                 

                         (   )(   )    

2
     
     

              false. 

If                   
        

       false 

In conclusion,        . 
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1.10 Solve for real numbers: 

(           )   

 (           )  (           )  (           )  

Solution:  

(           )  (           )   

 (           )  (           )  

(     )            (   )(   )(   )   

  ( )(    )(    )   .           
(    ) 

 
 

Combining these values:   
  

 
     

1.11 Solve for real numbers: 

 

    
 

 

     
 

 

     
 

 

     
 

Solution:  

Let be   ,   )     ( )  
 

    
    ( )  

  (    )

(    ) 
     

   convexe 

If         then by Jensen’s inequality: 

 (
     

 
*  

 

 
( ( )   ( )   ( )) 

 

   
     
 

 
 

 
(

 

    
 

 

    
 

 

    
* 

Denote                

 

  √   
  

 

 
(
 

   
 

 

   
 

 

   
* 

 

   
 

 

   
 

 

   
 

 

  √   
  

Equality holds if      . 

Denote                  
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  √          
  

 

     
 

Equality holds for                

1.12 Solve in  : 

    ( 
      )      ( 

      )      ( 
      )  √       

 
 

Solution:  

If           

              ( 
      )    

              ( 
      )    

              ( 
      )    

     ( 
      )      ( 

      )      ( 
      )    

and (       )
 

   . Similarly, if          , then 

      and      . Thus, only possible solution is 

          (    )
 

 
     

1.13 Find         such that: 

     

       
 

     

       
 

     

       
   

Solution:  

                         

  ∑
     

       
     ∑

    

         
 
 

 
    (1) 

Let                       (1) becomes 

∑
 

   
 
 

 
   (2) 

But ∑
 

   
 
 

 
   (3) 

From (2) (3)                       . 
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1.14 Solve for real numbers: 

 

   
 

 

 (   )
 

 

 (   )(   )
    

 
 

 (   )    (    )(     )
  

 
 

 
 

 

 (   )(   )    (     )(     )
 

 

Solution:  

 
   

∑
(   ) (     )

(   ) 

   

   

 (   ) ∑(
 

(     ) 
 

 

(   ) 
*

   

   

  

 
 

 
 

(   ) 

(     ) 
   (1).    

    

 
 

(   ) 

(     ) 
    (2) 

From (1) and (2):     is the only solution. 

 

1.15  Solve for real numbers: 

(   
    
  )(    

    
  )(    

    
  )(    

       ) (  
         )

( 
  
   *( 

  
   * ( 

  
   *( 

   
   * 4 

     
   5

 
  
           

 
     
   

 

Solution:  

Put    
    

    
  

    

Numerator of LHS (   )(    )(    ) (  
 
  ) 

 
 

   
(    )(    )(    ) (  

 
  )    

 

   
(  

   
  ) 

Denominator of RHS 

 (   )(    ) (  
 
  )  

  
   

  

   
        

   

   
 
  
   

  

  
     

    (1) 

Also, RHS=
  
   

  

  
   

  
    (2).From (1), (2), we get              
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   (

     

 
*

 
    

 

 

1.16 Solve for real numbers: 

 |

    
         

            

            

|  |

    
         

            

            

|    

Solution:  

Let         . Put    
|

|

    

 
 

 
 

 

 

  
 

  
  

 

  

  
 

  
  

 

  

|

|
 

 

    
   

   |

      

      

        

      

| 

                  

   (   
 )(    )   where    |

            

      

      

 (    )   (    )  

| 

Expand along    

     
 |

          

    

 (    )  (    )  
|    |

          

    
 (    )   (    )

| 

         

     
 |
          

    

      
|    |

          

    
      

|   

    (    ),(    )  (    ) -   

   (    ),(    )  (    ) - 
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 ,(   )    (   )-,          (     )-   

 (   )(    )(     )(      )   

 (   ) (   )(    ) (    ) 

Thus,    
(   )

(  ) 
(    )(   )(    )(   )(   ) (    ) 

Next, put    
|

|

    

 
 

 
 

 

 

  
 

  
  

 

  

  
 

  
  

 

  

|

|
 

 

    
   where   |

      

      

      
      

| 

Use                   

   (   
 )(    )   where    |

            

      

      
 (    )   (    )  

| 

                  

   |

            

      

          

          

|   

 (    ) |
     

         

         
|   |

        

         

         
|   

  (    ) ,(    )(    )  (    )(    )-   

  (    ),(    )(    )  (    )(    )-   

 (   )(    ),(   )(      )  (    )(     )- 

 (   ) (    ) ,                  - 

Thus,  

  
 

(  ) 
(    ) (    ) (   ) (    ) (   )(    ) 

(                ) 

As           
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         or     or           or              

             . 

1.17 Solve for real numbers: 

                          (        )   

                    

Solution:  

                   (        )(       )           

            

                                              

                          

 (           )                                  

 (           )    (           )           

            

 (           )           (      ) 

LHS    and       

Equality when             

(           )                     

                      and        

Thus, no solution. 

 

1.18     ( )            . Solve for real numbers: 

   (     )       ( 
    )        ( 

    )       (    ) 

Solution:  

  ( )                      , with {
       
      

 

   (    )  (    )(    )                 (1) 
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   (     )  (  
   )(  

   )  (    )
    

    
      

(     )
                   (2) 

   (     )  (  
   )(  

   )  (    )
    

    
   

   (     )(  
         

 ) 

     
          

          (     )
                (3) 

   (     )  (  
   )(  

   )  (    )
    

    
     

     
    

      
    

     
    

     
   
   

   (  
    

 )    ((     )
       )      (4) 

From (1) (2) (3) (4)  

                             

 

1.19 Solve for real numbers: 

 

(   ) 
 

 

(   ) 
 

 

   
         (   ) 

Solution:  

Denote      , then 
 

  
 
 

  
 
 

 
             (1) 

domain the equation (1)    : ( )  
 

  
 
 

  
 
 

 
  in (    ) 

 ( )             in (    )and has at most one root 

  
 

 
     

 

 
    

 

 
 

1.20 Solve for real numbers: 

.  √    / .  , -  √(  , -)   /     

, -   great integer function 

Solution:  

(  √    ) .  , -  √(  , -)   /     (*)  

If     then   √       * +    , -    * +  √* +      
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  LHS (*)     no solution. If     then (*) becomes 

* +  √* +       √(  )    

Let  ( )    √     with     

   ( )    
 

√    
  (    )    ,    ) 

  (* +)   (  )  * +        , -        , -    

More,   * +                   

            , -    , -     or , -    

    
 

 
 or    . Answer:    

 

 
 or    . 

1.21 Solve for real numbers: 

|        
 
 
|

√(       ) .      
 
 /

 
          

 
 

            
 
 

 

Solution:  

|        
 
 
|

√(       ) .      
 
 
/

 
          

 
 

            
 
 

 

 
|        

 

 
|

√   .          
 

 
/          

 

 

 
          

 

 

  .          
 

 
/
   (1) 

- Let ⟨
        

 

 
  

          
 

 
  

; (1) 
   

√       
 

 

   
 

 
  

       
 

  

(   ) 
   (   )    (       ) 

                                               

                     (   )     (   )   

 (   )(      )    2
     
        

 {
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          (   ) 

               
 

 
         

 

 
  

.        
 

 
/
 

           
 

 
 

      
  

 
    

 

 
   {

   
  

 
  

   
 

 
  

 {

  

 
    

 

 
    

 {  
    

 
     

 

                
 

 
           

 

 
 .        

 

 
/
 

   

         
 

 
       

  

 
    

 

 
   {

   
  

 
  

   
 

 
  

  

 {

  

 
 
 

 
    

 

 
 
 

 
    

 {  
  

 
 
   

 
        

 (   ) 

 

1.22 Solve for real numbers: 

(      )  (    )     (      )  (    )                 

Solution: 

           ⏟          
 
   

 (      )(    )     (      )(    )    ⏟                              
 
   

 

RHS  (      )(  (      ))
    

 (      )(  (      ))
    

 

 
         

 (      )(                )  (      )(               ) 

                           

 (           )  (           )    

     (           )    

So,         if-f               
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1.23 Solve for real numbers: 

    
 
      

 
  √ (√  √ )(  √ ) 

Solution:  

Equation      
 

      
 

   √   √  

If         
 

    and     
 

     

    
 

      
 

     equation can’t have negative solutions 

Let       
 

 
 and     are solutions for this equation. We’ve proved that 

this are its only solutions. 

Let   (    )     ( )     
 

        

We show that   is strictly increasing for (√        ) 

and strictly decreasing for (  √     )   (1) 

  strictly increasing for (√        )         √      

Such that        (  )   (  )   

    
 
       

 
    

     
             

         (because       and      )   

          , relation which is true because       √      

Similarly, for (  √     ) 

Let   ( )   
   

 

  and   ( )   
   

 

  

For (1)    it is increasing for (√        ) and strictly decreasing for 

(  √     )   (2) 
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For (2)    it is strictly increasing for (√        ) and strictly decreasing 

for (  √     ). Because               ( )    ( ) it is strictly 

decreasing for (  √     )   for this interval the equation 

  ( )    ( )   √   √  has a unique solution   
 

 
. 

  ( )    ( ) it is strictly increasing for (√        )   for this interval the 

equation 

  ( )    ( )   √   √  has a unique solution    . 

For internal (√      √     )   ( )    ( )   √   √    

the only solutions are    
 

 
     

1.24 Solve for real numbers: 

   (      )     (      )       (  ) 

Solution:  

Let        ( )   (1) 

       ( )   (2) 

then: (   )       (   )       ( )     ( )     ( )    ( )    

    ( )    ( )      ( )    ( )   (3) 

(   )       (   )        ( )    ( )     ( )    ( )     

Multiplying both sides by    ( ): 

    ( )    ( )    ( )      ( )    ( )      ( ) 

From (3)       ( )    ( )      ( )    ( )      ( ) 

  (    ( )      ( ))    ( )      ( ) 

    ( )     ( )        (4) 

If     then from (1),      and this a solution of the original equation. 

Otherwise we have from (4): 
 

 
   where      

 

 
       ( )    

      
 

 
 or       
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and these 4 solutions satisfy the original equation 

Set of solutions:      or   .   
 

 
/ or   .    

 

 
/ 

1.25 Solve for real numbers: 

           (     )             (     )    

Solution:  

 ( )            (     )      ( )      (     ) 

  ( )            (     )  (
     

√       
*       

           (     )  
(     )      

√       
 

    (  ) (     (     )       (     )) 

      4
     

√       
 

     

√       
5 

      4     (     )       (     )  
     

√       
 

     

√       
5 

Now,   ( )    

(1) when               

  . 
 

 
/  

Which is not possible as             ( )    

(2)      (     )  
     

√       
      (     )  

     

√       
 

which is clearly possible when   
  

 
 where        

  (    )
 

 
 

also    ( )    at   (    )
 

 
  ( ) is maximum at   

 

 
 
 

 
 

 .
 

 
/   . 

 

 
/  

 

 
4 .

 

 
/5  

 

 
   

But RHS of  ( )    which is not possible. Hence no solution. 
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1.26 Solve for real numbers: 

{
 

     
}  {

 

     
}  ,     -  ,     - 

* +    , - , - - great integer function 

Solution:  

 {
 

     
}  ,     -  ,     -  {

 

     
}  {

 

     
}  {

 

     
} 

and ,     -  ,     - 2
 

     
3  2

 

     
3  2

           

     
3  2

 

     
3   

 *       +  2
           

     
3  *       +  *     +  *     +, but 

,     -  ,     -                    
 

     
         

      *    +    2
 

 
       3 or   2 

 

 
       3 

1.27 Solve for real numbers: 

         (             )     (           )   

    (            
 

 
*         

Solution:  

Let               

          (   )          (  
 

 
*         

 (                  )   (          )    

 (    )(   )(   )     (   )(   )    

 (   )(   ),        -      (1) 

               

  √    √    √        √  

 (   )  [  √    √ ]       (   )    

          (    )  (   )        (   )    
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 (        )    

From (1): (   )(   )(        )         (        )    

 (   )    or (   )      *   +   real solutions 

 

1.28 Solve for real numbers: 

         (   
   )     (        )            (   

   )     (        ) 

Solution:  

                 , then we have: 

         (   
   )     (        )   

          (   
   )     (        ) 

 
   (      )

   (      )
   (        )  

   (      )

   (      )
    (        ) 

 
   (        )

    (      )
 
   (        )

    (      )
   (*) 

Let  ( )  
   (   )

     
         ( )  

 

   
       

 

 
   (   )

     
 

  ( )           ( )   on (   ) 

  ( )         ( )   on (    ) 

 
( )

 (      )   (      )                   (      )     (      ) 

   √        
 

 
 

     
  

√ 

 
 

1.29 Solve for real numbers: 

(    √   
  

     √   
  

  )(    √   
  

 √   
  

     )

( √   
  

     √   
  

     )(    √   
  

 √   
  

     )
  

 √(   )(   )
  

,            

Solution:  

Sea: {

 

 
 √   

  
 

 

  
 √   

  

  √   
  

    √   
  

 
 

 
 √(   )(   )
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La ecuacion toma la forma: 

(             )(             )

(             )(             )
 
 

 
  

 
               

             
 
               

             
 

Se observa lo siguiente: 

Sea:  ( )  
               

             
  ( )  

               

             
 

Entonces en la ecuacion: 

 ( )   ( )      
 

 
    

               
√(   )(   )
  

   

Por lo tanto:   
 

   
   

Nota: Propiedad De Funciones:Si:  ( )   ( ) Entonces:     

Si:  ( )   ( )    Entonces:       

 

1.30 Solve for real numbers: 

(     )   (     )                

Solution:  

(     )   (     )                  (*) 

We have:                                      

                               

Let         (     ) 

* If              we have:    ( )       
      (*) no roots. 

* If              we have:             (       )    

(   )    (true)  (     )   (     )            (1) 

                                    

 (   ) (                       )    

(True because:             ) 
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                         (      )  (    )   

            (               ) 

                                  

                       

 (   ) (                                       

                                        )    (True) 

    ( )     
                          

Equality         (   ) 

1.31 Solve for   .  
 

 
/: 

                    
 

 
(         )   (  √ ) 

Solution:  

  .  
 

 
/              

          
    

    
 
    

    
 

(     )

 √
    

    
 
    

    
   

          
 

 
(         )            

 

 
(
 

    
 

 

    
* 

 (         ) (  
 

           
* 

 
(     )

 √         (  
 

           
* 

 
(  √         )

   
 

 
 

(     )

 √  

                     
 

 
(         )   √  

Equality  8
         

 √          
 

√         

 
    

 

 

  
 

 
 

 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

36 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

1.32 Solve for real numbers: 

√               
 

 √          
 

 √                 

Solution:  

√               
 

 √          
 

 √                 

(1) can be written as √ 
 
 √ 

 
 √  where       the respective polynomial 

roots. 

1) Assume     then all roots have meaning. We have (       ) 

√ 
 

 √ 
 
             ( )    where  ( )              

         

                                                   

         

 ( )    for     as can be easily shown [if     obvious, if     the 

constant overweight the negative terms] 

√   √ 
 

                  , because            ( ) 

where  

 ( )                                                 

                             

Therefore √   √ 
 

 √ 
 
 √ 

 
 so, (1) has no solutions. 

2) Assume    . The inequalities         are true when     where 

       so          in which     too. The above polynomial  ( ) as 

positive (easy as the negative terms – powers of        are smaller than the 

constant term). 

We can also show that √   √ 
 
             ( )    

 ( )                                       as all 

negative terms are less than constant for        in which they become 
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maximal. Now,√   √ 
 
 √ 

 
 √ 

 
 hence no solution. Therefore, the only 

solution is    . Done. 

1.33 Solve for real numbers: 

            √    √    

Solution:  

Equation is defined for       . 

Put      (  )         Or     
 

 
 

                    √ (         ) 

            .  
 

 
/           .  

 

 
/ 

        .  
 

 
/   (1). Taking   sign in (1) 

         
 

 
        (    )

 

 
   (    )

 

  
 

   
 

 
 
   

  
  Not possible. Taking – sign in (1) 

         
 

 
    

    

 
    

    

  
    

 

  
 
 

 
 
  

  
  

Thus,      .
 

 
/     .

 

  
/     .

  

  
 / 

       .
 

  
/      .

 

  
/ 

 

1.34 Solve for real numbers: 
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(     )   (     )   (     )   (     )(     )(     ) 

Solution:  

Let                         

  

 
 
  

 
 
  

 
     

  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
     

AM-GM 

     √
  

 
 
  

 
 
  

 

 
    . So,       

                  

          ⏟          
 
   

 

1.35 Solve for    : 

   ∫.     (       )/

 

 

      

Solution:  

Let   ∫      
 

 
(       )dt ∫      

 

 
.
     

 
/      ∫      

 

 
   

Let              (    )(    ) 

 

 

  

  
 
 (    )

 
 ∫      

(     )

 
   ∫           

Thus,  

         ]
 

 
 ∫     

 

 

   ∫      
 

 

   

                         

Thus, the given equation becomes                  

                         or            or      
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1.36  Solve for real numbers: 

    
            

            
                        

Solution:  

     
            

            
        

     
 ( ∑   

   ∑    )
 
  

 (               )
 
     ∑    

   ∑     

   (              )     ∑    
   ∑     

  ∑       ∑      ∑     ∑       ∑         

 (      )  (      )  (      )    

But for any real  

      (      )  (      )  (      )    

So, this is possible if and only if 

 (      )  (      )  (      )    

(      )  (      )  (      )                     

       (    )
 

 
,   -   (Answer) 

1.37 Solve for real numbers: 

(        )√      

Solution:  

It is clear that      and    . We can make the substitution:        , 

here 

  (   ). We have: 

(                 )√ (      )    

                                    
     

    
 

We have: 

     

    
     

 

 
            

 

 
 or    
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; if 1)         and    . 

    not root 

2)           
  

 
 

3)           
  

 
 

            

         
 

 
   

  

  
 
   

  
 

      
  

  
       

  

  
 

root 2    
  

 
     

  

 
     

  

  
     

  

  
3 

1.38  Solve for real numbers: 

                    (       )       

Solution:  

We denote: 

                              (     ) 

But         (   ) ( )      

(   )(        )    (   )    (   )(   )    (true)  

Equality for    . And           ( )      (   )    

Equality for    . 

Adding the two inequalities   

(     )  (     )    (   )        (     ) 

  Equality holds for           .
 

 
/
 

 .
 

 
/
 

       * + 

1.39 Solve for real numbers: 

∫(
      

        
*

 

 

   
 

 
   (

   

   
* 
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Solution:  

  ∫
  ( )   

      ( )

 

 

   ∫
  ( )   

  (
  ( )
 *

 

 

 

   

Put:   
  ( )

 
, so    

    ( )

  
   

   ∫
  

    

  ( )
 

 

 
 

 
  |
  ( )   

  ( )   
| 

Then, if ∫
  ( )  

      ( )

 

 
   

 

 
  .

   

   
/   (E) 

(E)  
  ( )  

  ( )  
 
   

   
 
    ( )

    ( )
 
   

   
   ( )       ( )  

 

 
 

Put:  ( )  
  ( )

 
   -    , 

  ( )  
    ( )

  
 

So:          ( )      

        ( )        

 

                                                                       

  

 
 

 

    for     and    for:     

So: 
  ( )

 
 
 

 
      -    , 

  
 

 
 is the maximum of   

  ( )

 
 

  ( )        unique value for real numbers 

  ( )  *   + 
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1.40 Solve for real numbers: 

||

    
       (  )    (   )    (   )

         (  )     (   )     (   )

         (  )     (   )     (   )

||                 

Solution:  

4th grade Vandermonde Determinant  

(        )  (         )(         )(          )(          )   

 (           )                 

                                          

                      

               

So,                           is a solution 

  (   )     ( )          on (   ) 

  (   )     ( )           on (   ) 

  Equation  ( )   ( ) has an unique solution     . 

  *  + 

1.41 Solve for real numbers: 

√       
 

 √      
 

 √    
 

 

Solution:  

  √       
 

   √      
 

            

√       
 

 √      
 

 √    
 

 

    √     
 

 (   )        (   )          

                                      

   (               )    

   (  (   )    (   )    (   ))    

   (   )(        )    
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         (  
 

 
*
 

 
   

 
   

1.42 Solve for real numbers: 

 √      
 

  √            

Solution:  

By Rado’s inequality: 

 (
     

 
 √   

 
*   (

   

 
 √  * 

 √   
 

  √         equality for        

                   

 √      
 

  √       (    )     

  √  (    )(    )
 

  √  (    )  (    )     

             . No solutions. 

1.43 Find       .  
 

 
/ such that 

     

 
 
      

 
 
     

 
   

    

  
(        ) 

Solution:  

         .  
 

 
1     ( )          

    

  
   

  ( )           
    

  
      ( )          

    

  
  

    ( )          
    

  
                .  

 

 
1 
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    +          +          +           +          +          +              +           + 

     -        -           0          +          +              +           + 

    0          -           -         ( ) -   0          +              +           + 

   0          -            -          -            -             -            0          +         + 

  0                                                                                            0               

 

    .
 

 
/   

    

  
     
   
   

    ( )      
    

  
 
         

  
   

   
   
   

   ( )          .
 

 
/       

    

  
 
 

 
 
          

  
   

   
   
   

  ( )         .
 

 
/    

    

  
 
  

 
   

   

 
 
     

 
   

   
   
   

 ( )        .
 

 
/    

 

 
 
    

  
 
  

 
   

 

 
 
   

 

 
       

 
   

So   ( )        .  
 

 
1 equality just for    

 

 
  

     

 
 
     

 
 
     

 
   

    

  
(        ) 

        .  
 

 
1 equality just for        

 

 
 

 

1.44 Solve for real numbers: 

                 √    

Solution:  

                 √     
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(  )   (  )    (  )     √    

Let    √      
 

 
√         ⏟

 

 (    √ )⏟        
 

   

How 

  
  

 
 
  

  
      √                  

Applying Cardano Theorem: 

  √√    √     √ 
 

 √√    √     √ 
 

 

How    
 

 
√     

   √√√    √     √ 
 

 √√    √     √ 
 

  

 

 

 

1.45 Solve for real numbers: 

|

  
     

  
    

      

      
    
      

|    

Solution:  

Let:                  and 

  |

  
  

      
      

    

    
    
     

| 

Using                              . We get: 

  |

  
      

  
    

        
          

     
       

|  (   )(   )(   )   , 
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where 

   |
   

                     
                                 

| 

Using                      

   |
   

               
      

| 

Using                    . We get:    (   )(   )   

   |
   

               
                  

| 

Using          ,we get: 

   |
        

(   )(     )         
| 

  (   )(                 ) 

Thus, 

  (   )(   )(   )(   )(   )(   )(                 ) 

                                

  {     
 

 
     

 

 
      } 

1.46 Solve for real numbers: 

      (√   )(           ) 

Solution:  

      (√   )(           ) ( ) 

Put            .             

Now, (1) becomes:       (√   )(   ) 

             √   ;               √  

                          √  
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   .  
 

 
/   

 

√ 
       .  

 

 
/    

  
 

 
     

  

 
      

 

 
            

  2    
 

 
 (    )      

 

 
        3 

 

1.47 Solve for real numbers: 

(   )       
    
      

Solution:  

(   )       
    
      ( ) 

(   )       
    
             

    
  (   )      

Let be the function:  ( )     
 

 
   ( ) (    )  (   )    

   
    

 ( )     

   
   

 ( )     
   

< :
 

 
 
 
 
 
   ( ) (    )

 
 (   )  

 

 
;=     

  ( )  
 

 
   ( )      

 
 
   ( ) (    )  (   ) 

  ( )  
 

 
   ( )   

 
 
   ( ) (    )  

 

 
   ( )      

 
 
   ( ) (    )  

 

 
   ( )     

  ( )  (
 

 
   ( )  

 

 
    ( )    *  

 
 
   ( ) (    )    

 

 

 

 

 

x                                                                     

f’’(x) +++++++++++++++++++++++++++++ 

f’(x)                                                               
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Us prove   ⏞
 

  ⏞
 

 .     ( )  
 

 
   ( )  (   ) ⏞

 

 , let us prove that: 

Let be the function  ( )  
 

 
   ( )  (   ) 

  ( )  
 

 
 
 

 
   

    

  
;    ( )      

 

 
 

 (
 

 
*  

 

 
   (

 

 
*  

 

 
   

x 
                                

 

 
                         

g’(x)             

g(x) 
         

 

 
   (

 

 
*  

 

 
        

 

      ( )        ( )    

Let us prove:   ( )  
 

 
    ( )  (   ) ⏞

 

  

Let be the function:  ( )  
 

 
    ( )      

  ( )  
 

 
(    ( )   ) 

  ( )       
 

√ 
  

 (
 

√ 
 *  

 

 √ 
    

 

 

 

 

So,  ( )  

       

x 
                        

 

√ 
                 

h’(x)             

h(x) 
      

 

 √ 
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    ( )  (   )                         

x                                                       

f’(x)                              

f(x)             ( )             

Equation (*) has two solution: x=1, x=2. 

 

1.48 Solve for real numbers: 

                              

Solution:  

                              

                              

       (      )                  

   
       √(      )    (          )

  
 

 
       √                             

  
 

 
       (     )

  
 

                  

 )           *   +  

  )              one solution 

Let  ( )  )         

 ( )          and   ( )               (   ) such that 

  ( )   .  So: x *        + 

 

1.49 Solve for real numbers: 
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||

 

√ 
   
 

√ 
    

 

√ 
    

 
 

 
  
   
√  
 

 √ 
 
   √ 
 
 
 
  

||    

Solution: 

    √    √ 
 
   √ 

 
   

  |

 
 
    
 
 
   
 
 
    
 
 

  

  
    

 

  
   
 

  
  
 
  

| 

Using                         

  |

 
   

          
 

   
              

 
   

         
 
 

    
     

       
   

     
        

   
     

      
 
  

|   (   (   )(   )   

where 

   |
   

         
                                 

| 

Using                                

   (   )(   )   

 

   |
   
     

          (   )             (   )              
| 

   (   )(   ), 
         (   )              (   )   - 

 (   )(   )(   )(       ) 

   (   (   )(   )(   )(   )(   )(       ) 

                                           

                         ;       *       + 
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1.50 Solve for complex numbers: 

                              

Solution:  

                              

                      
 

 
   

For: (      )(      )(      )    we have: 

       (       )   (          )    

 (              )   (        )        

 {
      

       
          

 

                (   )   (   )      

 

 
     
⇒                    

 

 
  

     
⇒     

 

{
 
 

 
       (     )  

 

 
  

   
 

    

      
 

 
  

 

 

 

                
  √  

  

     
⇒     
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{
 
 
 
 

 
 
 
 

   √
  √  

  

 

  √
  √  

  

 

   4
   √  

 
54
  √  

  
5

 
 

 4
  √  

 
54
  √  

  
5

 
 

   4
   √  

 
54
  √  

  
5

 
 

 4
  √  

 
54
  √  

  
5

 
 

 

 

{
       
       
       

 

 

Let:                   

 

(         )( 
        )( 

        )    

 

{
               
                
                

 

 

(                  )(                  )(      

              )    
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FUNCTIONAL EQUATIONS 

 

2.1 Determine all functions   with the following property: They are 

defined for all real numbers except 
 

 
 and  

 

 
, and for each of those 

real numbers the equality 

 .
   

    
/   ( )    holds. 

Germany NMO 

Solution:  

 (
   

    
*   ( )         

 

 
    

 

 
 

  
   

    
  :

   
      

   
(   )
    

;   (
   

    
*  

   

    
  

 .
   

    
/   .

   

    
/  

   

    
   (1) 

  
   

    
  :

   
    

  

   .
   
    

/
;   (

   

    
*  

   

    
  

  ( )   .
   

    
/  

   

    
   (2) 

From hypothesis and (1) and (2)   

{
 
 

 
  (

   

    
*   ( )   

 (
   

    
*   (

   

    
*  

   

    

 ( )   (
   

    
*  

   

    

 

                 

⨁ 4 ( )   (
   

    
*   (

   

    
*5    
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  ( )   (
   

    
*   (

   

    
*  

 

 
(  

   

    
 
   

    
* 

 (
   

    
*   (

   

    
*  

   

    
 

                  

  ( )  
 

 
(  

   

    
 
   

    
*  

   

    
  

 

2.2 Find all continuous functions       such that: 

 ( )   (  )   (  )             

Solution:  

 ( )   (  )   (  )                (3) 

Put  ( )   ( )         . We have 

(1)   ( )           (  )            (  )              

             ( )   (  )   (  )      (2) 

Put     , we have (2)  (  )   (  )   (   )    (3) 

(2) and (3)   ( )   (   )   (4) 

Put   
 

  
, we have (4)   ( )   .

 

  
/   (5) 

Put   
 

  
, we have (5)   .

 

  
/   .

 

   
/ 

Similarly, we have  ( )   .
 

  
/   .

 

   
/     .

 

   
/     . 

The sequence (  ) such that           
 

   
. 

We have             

We have  (  )   (  )     (  )   (    )     (        )   ( ) 

Put    , we have (2)    ( )     ( )     ( )         

So,  ( )                 

We have (1)                                   

       (True) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

55 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

Therefore  ( )                

2.3 Find all continuous functions: 

       (  )   (  )  (        ) (   )        

Solution:  

Consider a continuous function   satisfying the proposed property. Let  (   ) 

be the property  (  )   (  )  (        ) (   ) 

From  (   ) we conclude that  ( )   . 

From  (   ) we conclude that  (  )     ( ) for every   

From  (    ) for     we get 

   (  )   ( )  (      ) ((   ) )        (1) 

Which is also true when     according to the first point. 

Setting     in (1) we conclude that   is odd. 

Setting     in (1) we conclude that  (  )    ( ) for all  . 

Now suppose that  (  )    ( ) for some positive integer   and for all  . 

Applying (1) with       we get 

(   )  ((   ) )   ( )  (       )  ( )  (   )  ( ) 

that is  ((   ) )  (   ) ( ) for all  . Thus, since   is odd, we have 

proved that 

           (  )    ( )        (2) 

Applying (2) with positive   and 
 

 
 instead of   we get also 

            .
 

 
/  

 

 
 ( )     (3) 

Combining (2) and (3) we get for          and     the following  

 .
 

 
 /  

 

 
 (  )  

 

 
 ( )     (4) 

Thus  ( )   ( )  for all    . Now, the continuity of   shows that 

 ( )   ( )  for all real  . 
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Conversely, any function of the form      satisfies the proposed functional 

equation. 

2.4 Find all continuous functions     (   ) such that: 

 ( ) (  ) (  )           

Solution:  

 ( ) (  ) (  )          

 (  ) (  ) (  )      
 (  ) (  ) (  )

 ( ) (  ) (  )
 
   

  
     (  )     ( )   

  ( )   
 
  .

 

 
/   

 
   

 
   .

 

  
/   

 
 
 
 
  
 
 
   .

 

  
/ 

 ( )   
 

 
 
 

  
 
 

  
   

 

   .
 

  
/   

 

 
(  .

 

 
/
 
*
 .

 

  
/. Taking limit as     we 

get   ( )   
 

  ( ) ,                -.  

Also,  ( ) (  ) (  )      ( ) ( ) ( )     ( )    . Thus, 

 ( )   
 

  

 

2.5 Find all continuous functions:           such that: 

 (
   

 
*  

 ( )   ( )

 
        

Solution:  

Let’s set      .
 

 
/  

 ( )  ( )

 
  ( )    .

 

 
/   ( )    (1) 

Set      .
 

 
/  

 ( )  ( )

 
  ( )    .

 

 
/   ( )   (2) 

Using (1), (2) we have:  .
   

 
/   .

 

 
/   .

 

 
/  

 ( )  ( )

 
 or  

 (   )   ( )   ( )  
 ( )  ( )

 
 where   

 

 
   

 

 
      . Now let’s set 

 ( )   ( )  
 ( )  ( )

 
. Then  (   )   ( )   ( )       . So   is a 

Cauchy function and continuos. So  ( )          
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  ( )     
 ( )  ( )

 
      and 

 ( )      ( )  
 ( )   ( )

 
  

  ( )     
  ( )   ( )

 
  ( )     

  ( )   ( )

 
  

and similarly these functions satisfy the equation. 

 

2.6 Find all continuous functions       such that: 

 ( )   ( )           (   )        

Solution:  

 ( )   ( )   (   )   (   )   ( )  
  

 
  ( )  

  

 
  (   )   

 
  

 
 
  

 
   (   )   ( )  

  

 
  ( )  

  

 
  (   )  

 

 
(   )    (1) 

Now, let  ( )   ( )  
  

 
   continuous (2) 

From (1) (2)   ( )   ( )   (   )   ( )          (3) (from 

Cauchy equation). From (2) (3)   ( )  
  

 
     ( )  

  

 
    

 

2.7 Find all function       satisfying: 

 (     )  (   )  ( )              

Solution:  

Set            ( )         (*) 

Let   
 

 
  .  

 

 
/  .  

 

 
/
 

 ( )        (1) 

Set:     
 

 
  .  

 

 
/  .  

 

 
/
 

 .  
 

 
/         (2) 

 
( ) ( )

 (  
 

 
*  (  

 

 
*
  

 ( )      
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By induction we have: .  
 

 
/  .  

 

 
/
  

 ( )          

Let      (   )  .  
 

 
/
  

 ( )       (3) 

Suppose exists      such that  (  )     (  )    (because (*)). 

From (3) we let   from to   

 (    )     
    

(  
 

 
*
  

 (  )     
   

6(  
 

 
*
 

7

 

 (  )     
   

      

But  (    ) is real number   contradiction   ( )        . 

 

2.8 Find all functions       continuous in     such that: 

 (     )   (    )     

Solution:  

More general:        (  )   (  )    , let        
 

 
  

 .
 

 
 /   ( )  

 

  
  , now 

 

 
      (   )   

 (  )   ( )  
 

  
  

 (   )   (  )  
 

  
    

 

 (   )   (     )  
 

  
  (   )  }

  
 

  
 

  

 (   )   ( )  
 

  
  (         (   ))   

   
   

 (   )   ( )     
   

 

  
  
     

    
  

 .    
   

   /   ( )  
 

  
  

 

    
  

 ( )   ( )  
 

  
  

  
  

  

  ( )   ( )  
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Let  ( )     ( )    
  

(   )(   )
 

In our case              .    ( )    
  

    
 

 

2.9 Find all ROLLE functions   ,   -    such that: 

>
 ( )   ( )  

    

    
      ( )       ( )          (   )

 

Solution:  

      ( )       ( )         ( )  
    

    
 ( )  

    

    
 

Multiplying both sides by  
     

     to obtain: 

 

  
[ 
     
     ( )]  

    

    
 
     
     

 

  
[ 
     
    ( ( )  

    

    
*]    

  ( )   
     

    . ( )  
    

    
/ decreases on ,   - 

But  ( )   ( )    

  ( ) must be constant on ,   - 

  ( )   ( )     ( )  
    

    
    ,   - 

 

2.10 Find all functions     (   ) such that       : 

 ( ( )   ( )) .  ( )    ( )    ( )    ( )/   

  ( ( )   )( ( )   )( ( )   ( )   ) 

Solution:  

Let     and put  ( )     . Equation gives us: 

 (   )(           )   (   )(   )(     ) 

  (  )(  )(   )   (   ) (    )       (   )(   ) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

60 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

      (       )            

 (   )       .Thus,  ( )         

 

2.11 Let      . Find all functions       such that: 

 ( ) ( )   (   )  (
 

 
*
 

           

Solution:  

 ( ) ( )   (   )  .
 

 
/
 

      (*) 

In (*), we put       ( ( ))
 
  ( )  [

 ( )   

 ( )   
 

 ( )    

Let     
( )
 ( )    .

 

 
/
 

      (contrary) 

 ( )    

Let   
 

 
    

 

 
 
( )
 .

 

 
/ . 

 

 
/    <

 .
 

 
/   

 . 
 

 
/   

 

With  .
 

 
/   , let   

 

 
 
( )

: .  
 

 
/   

 

 
   ( )   

 

 
    

With  . 
 

 
/   , let    

 

 
 
( )

: .  
 

 
/  

 

 
   ( )  

 

 
    

Solution:  ( )   
 

 
    or  ( )  

 

 
    

 

2.12 Find all functions       that satisfy: 

  ( )    ( )   (   )  
    

    
          

Solution:  

Let                 
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  ( )    ( )   (   )  .
 

 
/
 

      (1) 

In (1) we put:         ( )   ( )  [
 ( )   

 ( )   
 

Case:  ( )    

In (1) we put:      ( )    .
 

 
/
 

           (contrary) 

Case:  ( )    

In (1) we put:   
 

 
    

 

 
   .

 

 
/    . 

 

 
/    <

 .
 

 
/   

 . 
 

 
/   

 

 .
 

 
/   . In (1) we put:   

 

 
  .  

 

 
/  

 

 
     

 ( )  
 

 
(  

 

 
*  

 

 
    √

    

    
    

 . 
 

 
/   . In (1) we put:    

 

 
 

  (  
 

 
*  

 

 
     ( )  

 

 
(  

 

 
*  

 

 
    √

    

    
    

We check two case    don’t satisfy. No solution. 

 

   2.13 Let      . Find all functions       such that: 

 ( )   ( )    (   )  
 

 
              

Solution:  

 ( )   ( )    (   )  
 

 
         (*) 

In (*), we put    :  ( )   ( )    ( )  [
 ( )   

 ( )   ( )
 

Case:  ( )   . In (*), we let    :   (   )   
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It is false because we choose       ( )   
 

 
 (contrary)  No solution. 

Case:  ( )   ( )     (const) 

From (*) we have:        
 

 
       

 

 
          (contrary)  

 No solution. 

2.14 Let      . Find all functions       satisfying the following 

relationship: 

 (     )   (     )   (   )               

Solution:  

 (     )   (     )   (   )         (*)        

In (*) we put:         ( )   ( )  [
 ( )   

 ( )   
 

Case:  ( )   . In (*) we let: 

   
 

 
     (  

 

 
 *       ( 

 

 
 *   (

   

 
 *       

If     then  ( )               (contrary) 

If     then  .
   

 
 /       

  ( )     
  

(   ) 
   (

  

   
*
 

   

But: 

Deg of    ( )           of    ( )   No solution. 

Case:  ( )   . In (*) we let: 

   
 

 
   (     

 

 
 *     (  

 

 
 *       ( 

 

 
 * 

  4
     

 
 5   (

   

 
 *       

If     then                 (contrary) 
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If     then we put   
 

   
   ((   ) )   ( )  .

  

   
/
 

   

  ( )   ( )  (
  

    
*
 

(
 

   
*
 

  ( )  (
  

     
*
 

   

But  ( )     ( )   ( )    

Hence:  ( )    .
  

     
/
 

    ( )    .
  

     
/
 

    No solution. 

Answer: No solution. 

2.15 Find all functions       such that: 

 (    )   (    )   (  )  
    

    
          

Solution:  

 (    )   (    )   (  )  
    

    
      (*) 

In (*) we let:         ( )   ( )  [
 ( )   

 ( )   
 

Case:  ( )    

In (*) we let:      (  )   ( )   ( )  
    

    
   ( )   

    

    
  

We check in (*): 
    

    
(    )  

    

    
 (    )   

    

    
   

    

    
        

 (
    

    
*
 

 ((  )    )         

(This is contrary)   No solution 

Case:  ( )    

In (*) we let:      (  )   ( )   ( )  
    

    
   (  )   ( )  

    

    
  

  (  )   .
 

  
/  

    

    
4
 

 
 
  

  
   

  

  
5 

  .
 

  
/  

    

    
 
 

 
4
.
 

 
/
 
  

 

 
  
5    (1) 

Suppose:   – continuous in     
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In (1) we let       (  )   ( )  
    

    
 
 

 
 
   
 

 
  
   

 

   
 

We also check in (*)   contrary   No solution.  

2.16 Find all functions       such that: 

  (   )   ( )   ( )                  

Solution:  

 ( ( ))   ( (    ))   (  ) (  )         

Moreover  ( ( ))   ( ) ( ) 

 ( (  ))   ( (   ))   ( )          (  ) ( ) 

and  ( ( ))   ( (   ))   ( ) (  )        . As  ( ( ))  

 ( ) ( ) 

hence  ( ) ( )   (  ) (  )         multiplying each member by  ( ) 

we have: 

 ( ) ( )   (  ) ( ) (  )         ( ) 

 ( ) ( )  ( ( )        ) (  )         ( ) 

 ( ) ( )   ( ) ( ) (  )         (  )         ( ) 

 ( ) ( )   ( )( ( ( ))                (  )         ( ) 

 ( ( ))   ( )  so        ( )         (  )         ( )      

and  ( )   (  )    ( )      we deduce  (  )   ( )    ( ) then 

 ( )   . Finally:    ( ( ))   ( )   ( )        . No solution. 

 

2.17 Find all continuous functions       such that: 

 ( )  
 

 
  (  )   ( )         

Solution:  

 (  )   ( )     ( )   .
 

 
/  

 

 
  .

 

 
/   .

 

  
/  
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   .
 

    
/   .

 

  
/  

 

  
     * + 

 ( )   .
 

 
/   .

 

 
/   .

 

  
/     .

 

    
/   .

 

  
/  ∑

 

  

 

   

 

 ( )   .
 

  
/    

 
 
.
 
    

/

 
 
  

 

   
   

4 ( )   .
 

  
/5     

   
:  

 
 
.
 
    

/

 
   

; 

 ( )   .    
   

 

  
/    

 
 
 

 
 
 

  ( )   ( )  
 

 
  ( )  

   

 
 

 

2.18 Let      Find all functions   ,   -    such that: 

 (    )     ( )           √       ,   - 

Solution:  

 (    )     ( )           √  ( ) 

In (*) put       ,   -   ( )     ( )  8
 ( )   

 ( )  
 

 

 

Case:  ( )   . In (*) we let: 

     ( )     ( )          √   ( )     ( )         ,   - 

Checking: 

               √            √          ,   - 

                                    

 

No solution. 

       ( )  
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   ( )             ( )     ( )    
 

  
 
 

 
 

Checking: 

 

 
   

 

 
          √            √         ,   - 

                                    No solution. 

 

2.19 Let      . Find all functions       such that: 

   (   )      (  )  
 

 
                   

Solution:  

   (   )      (  )  
 

 
              (*) 

In (*) put           ( )      ( )  8
 ( )   

 ( )  
 

 

 

(i) Case:   ( )     in (*) put          ( )      

      ( )          

Check:         
 

 
            

 

 
              (contrary)   no 

solution. 

(ii) Case:   ( )  
 

 
  in (*) put       

 

 
     (  )    (  )  

  

  
   

 (  )   
 

 
 ⏞
    

 ( )   
 

 
 

Check: 

 ( )  
 

 
   

 

 
   

  

  
 
 

 
           

 

 
             (contrary)   no 

solution 

 ( )   
 

 
  

  

 
   

  

  
 
 

 
             

   
  

 
 
 

 
                        . contrary…no solution 
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2.20 Find        such that        divide  

(   )  (    )       

Solution:  

 

We have (   )  (    )  (      )  ( )  (1) 

Put   
   √  

 
, we have (1)  .

   √  

 
/
 

 .
    √  

 
/
 

  (2) 

Put   
   √  

 
, we have (1)  .

   √  

 
/
 

 .
    √  

 
/
 

  (3) 

Put 
( )

( )
, we have .

    √  

  
/
 

 .
    √  

 
/
 

 .
    √  

 
/
  

 .
    √  

 
/
 

  (4) 

Put   is the angle satisfy      
  

 
 and      

 √  

 
 

We have (4)     (   )       (   )     (  )       (  ) 

 {
   (   )     (  ) ( )

   (   )     (  )  ( )
 

We have (5)  [
               ( )

             ( )
 

Lemma: If 
 

 
 is a rational number, we have      2    

 

 
3 

Prove 

We have 
 

 
 is a rational number       (   ) 

With De Moivre’s Formula we deduce that               and         

      are algebraic integers         is an algebraic integer. 

But                   

Now from             so we have        *             +  

or      2     
 

 
3 

We have: 

 (7)  (    )             (since 
 

 
  )         (9) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

68 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

We have: 

 (8)  (    )             (since 
 

 
  )          (10) 

We have: 

 (10)      (  )     (  )     (  )           (   )      

(since 
 

 
  ) (Absurd) 

We have (9)     (  )     (  )   (True) 

Therefore with             divide (   )  (    )      
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SYSTEMS 

3.1 Solve for real numbers: 

{

   √      √     

   √      √     

   √      √     

 

Proposed at Spanish-TST 

Solution:  

Find all         satisfying: 

   √      √        (a) 

   √      √        (b) 

   √      √        (c) 

√      √       or    √       or    √      

        or            √         or  √      

     or            or    

 √      √                (1) 

and √      √               (2) 

Let us assume       (a)  √      √             (by (1)) 

  (b)  √      √             (by (2)) 

  (c)  √      √             (by (1)), thus leading to a 

condition. Hence,        (i) 

Similarly, if we assume     , we shall obtain     , this again leading 

to a contradiction. Hence       (ii) 

(i), (ii)        (c)        (b)       

 (
   
   
   

+  (
   
   
    

+  (
   
    
   

+  (
   
    
    

+  (
    
   
   

+  (
    
   
    

+  (
    
    
   

+  (
    
    
    

+ 
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are all possible solutions. 

3.2 Solve for real numbers: 

{
       
     

                    
 

Solution:  

            
  

  
 
  

  
 
  

  
 

         (        )

        
  

 
(        ) 

        
            (1) 

                     
(        )

        
  

                  , but (1)  

                    

                   

“ ”                              

(     )  (     ) 

3.3 Solve for real numbers: 

{

       
            

   (
 

 
*     .

 

 
/     .

 

 
/     .

  

  
/     .

  

  
/     (

  

  
*

 

Solution:  

   (
 

 
*     .

  

  
/     .

 

 
/    .

  

  
/    (

 

 
*     .

  

  
/    

[  (
 

 
*    .

  

  
/] [  (

 

 
*    .

  

  
/]  0  .

 

 
/    .

  

  
/1 0  

 

 
   

  

  
1   

 [  (
 

 
*    .

  

  
/] [  (

 

 
*    .

  

  
/]    
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      (  
 

 
  
 

 
   

 

 
   
 

 
   

 

 
  
 

 
*        

  
 

 
   
 

 
   

 

 
   
 

 
   

 

 
   
 

 
   

Let:   
 

 
     

 

 
     

 

 
              

but         .
 

 
   

 

 
   

 

 
/    

   

   
       

                     (        )      

                     
 

 
   

 

 
   

 

 
   

                    but      ( )           

  has unique solution            . 

 

3.4 Three different nonzero real numbers       satisfy the equations: 

  
 

 
   

 

 
   

 

 
       

Prove that:          

Proposed as subject- Argentina NMO 

Solution:  

  
( )
        

( )
          

( )
       (1)   (2)   (3)     (∑ )  

∑     (a) 

Also, 
 

 
 
( )
    

 

 
 
( )
    

 

 
 
( )
    

(4)   (5)   (6)  
 

   
      (∑ )   (∑  )          ( ∑  

∑  )      

 
( ) 

   ( )
         , (1) – (2)     (   )   (   )  

   

   
  

 

 
   (7) 
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(2) – (3)     (   )   (   )  
   

   
 
( )
 
 

 
 

(3)   (1)     (   )   (   )  
   

   
 
  

 
   (9) 

(7)   (8)   (9)    
   

   
           (c) 

(c)   (b) becomes: 
 

   
                  . Let      

Then,            (   ) (   )    

      (               )                     

                         (by (c)) 

3.5 Find     such that: 

{
(    )      

(    )      
 

Solution:  

As (    )            (    ) and (    )            (    ) 

We get (    )      and (    )     are defined when 

       and        i.e. when   lies in the first and the third quadrant. 

Also, for                   . 

For     
 

 
          

 

√ 
          (    )       

For 
 

 
   

 

 
          

 

√ 
          (    )       

  for     
 

 
, we have to just check up for   

 

 
. 

For   
 

 
             (    )     (    )      

 

√   . 

For     
  

 
          and  

 

√ 
        

   (    )     (    )       . Similarly, for 
  

 
   

  

 
 

  (    )      . For   
  

 
 (    )     (    )      . 

Thus, general solution is      
 

 
    . 
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3.6 For           solve the system: 

>

           

            (   )    

        (   )       

 

Solution:  

>

                                        ( )

            (   )       ( )

        (   )                ( )

 

We have (1)                (4) 

Similarly, we have (2)                 (   )    (5) and (3)   

             (   )     (6) 

(4) and (5)                  (       )  (7) 

(4) and (6)                (       )  (8) 

(7) and (8)    ,             (       )-         

  (       )   

                                   

 (   ) (       )        or           

1)     

We have (1)                      

We have (2)        (     )      (   )      

    (   )       (   )(   )        or     

1.1)           

We have (1)                    (     )  (     ) 

1.2)           

We have (1)                    (     )  (     ) 

2)             
    

 
 

We have (1)     
    

 
          

    (   )
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We have (2)       (    )      (   )              

     (   )      4
    (   )

 
5

 

    
    (   )

 
  

     (   )     
 

 
   

 

 
 (   )  

 

  
(   )       

 
 

 
   

 

 
 (   )  

 

  
(   )  

 

 
(   )        

 
 

 
.  

   

 
/
 

 
(   ) 

 
       (Absurd) 

So the system has 2 roots: (     )  (     ) and (     )  (     ) 

 

3.7 Solve for real positive numbers: 

{
 
 

 
 
  √(   

 

  
* (   

 

  
* (   

 

  
*   (     ) 

      
 

   

 

Solution:  

  √(   
 

  
* (   

 

  
* (   

 

  
*  
( )
 (     )  

      
( )  

   
 

LHS of (1)  
  

   
√(      )(      )(      ) 

 
( )   

   
√*        (     )+*        (     )+*        (     )+ 

(      (     )) 

Now,         (     )    (           )  
( )
  (   )(   ) 

Similarly,         (     )  
( )
  (   )(   )   
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        (     )  
( )
  (   )(   ) 

(a), (b), (c), (d)      
( )
  (   )(   )(   ) 

Now, ∑  
 

 
*(   )  (   )  (   )+  

    

 
√(   )(   )(   )
  

 . ∑ /
 

   (   )(   )(   ) 

  .∑ /
 

 
(  )

  (   )(   )(   ) 

(i), (ii)   RHS of (1)      of (1), with equality occuring when      . 

But LHS of (1)   RHS of (1)        

  using (2),    
 

  
    

 

 
   

 

√√ 
 

  only possible solution is: (     )  (
 

√√ 
 
 

√√ 
 
 

√√ 
*  (answer) 

3.8 Solve for real numbers: 

{
              

                      
 

Solution:  

   we know that 

 √                  √       √     

             √      

                                    

                        

              (   )                         

 (   )        

                               
 

 
     

 

 
        

 

 
     

 

 
        



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

76 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

   (   )     . 
 

 
/       

 

 
        (  ) . 

 

 
/ 

     (  ) .
 

 
/       (

 

 
*      

Now,                                     

         

Let  ( )                ( )        
 

    
     ( )     ( ) 

is increasing function. So,  ( ) can have atmost one root   ( )        

is the only possible solution. 

{
     (  ) .

 

 
/       (

 

 
*     

   
   

 

3.9 Solve the following system: 

{
 
 
 

 
 
             

  

   

(  )  (  )  (  )  (  )  (  )  (  )  
  

    

(   )  (   )  (   )  (   )  
  

    

(    )  
 

  

 

Solution:  

Let                         

This system of equations reduces to 

{
  
 

  
 ∑  

  

  

∑   
  

  

∑    
  

  
      

 

Let us create a biquadratic equation in which         are its roots. 
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   (
  

  
*    (

  

  
*    (

  

  
*       

                        

Dividing throughout by    (    )              
  

 
 
  

  
   

   (   
 

  
*    (  

 

 
*      

   6(  
 

 
*
 

  7    (  
 

 
*       

   .  
 

 
/
 

   .  
 

 
/        Let   .  

 

 
/ 

              ,   
 

 
 
  

 
 

  
 

 
 
 

 
,             ,     

 

 
 

Or   
 

 
 
  

 
,             

  
 

 
 
 

 
      

 

 
 
 

 
 
 

 
⟨>

 
 
 
 

? 

          .
 

 
/

 

 
,      

 

 
   .

 

  
/

 

 
 

      
 

 
   .

 

  
/

 

 
,      

 

 
   .

 

  
/

 

 
 

(       )  (               )  (  
 

 
 
 

 
 
 

 
* 

{
 
 
 
 
 

 
 
 
 
 
  (

 

 
*

 
 

  (
 

  
*

 
 

  (
 

  
*

 
 

  (
 

  
*
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Note: Since (       ) are symmetric in the given problem, so any combination 

of the above set is possible for (       ). 

3.10  

{
  
 

  
 
   √(   

  

 
     

 

 
*
  

  
 

     

  
 
 

     

 

Solution:  

Denote:      
  

 
     

 

 
    

  

 
 

    
 

  

      
 

  

  

as    
 

  
    .

 

 
 
  

 
/     

  

 
, thus 

     
  

 
 

    
  
 

      
  
 

 
   
  
 
     

  
 

      
  
 

 

Let   
  

 
             gives              

           

        
     (    )   

     (       )

              
 

For the sake of convenience, let        , then: 
   

    
 

 (   )

       
   

simplifying yields                , since       
  

 
  , so, cubic 

equation can be written as:  (   )   (   )  
 (   ) 

(   ) 
  . 

Replugging, we obtain that: 

     
  

 
 

    
  

 

      
  

 

 
   

  

 
     

  

 

      
  

 

 √ . Hence, we have: 

{
 
 

 
    √(√ )
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We note         
 

     
       

    
 shows     putting in the second 

equation we have: 

      (  

 

     +

             
      

     is rational so,      should be in the form of       for    . We have 

then:  

                 
  

   
 
    

  
   (by induction) and hence 

 

  
 

   

     
   which implies   

 

     
   

        
 

   , where        and 

    as  

               (by induction) and being the g.c.d (   )   . 

This shows that   
 

    if and only if     but     and     are co-primes 

integers so,      thus, only case we can have is              , 

which gives us  

      
 

 
. The required answer therefore is (   )  .  

 

 
/. 

 

3.11 Solve for real numbers: 

{
 
 

 
 

         

|

   (   )    (  √  )    (√    )

   (   )    (  √  )    (√    )

   (   )    (  √  )    (√    )

|
   

Solution:  

  |

   (   )    (  √  )    (√    )

   (   )    (  √  )    (√    )

   (   )    (  √  )    (√    )

|    

                  .
 

 
  / 
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   (   )                                    (1) 

             

                                      

   (   )                                          (2) 

   (   )                                      

                  (3) 

  |

    (  √  )    (√    )

    (  √  )    (√    )

        (  √  )    (√    )

|    

We develop after the first column: 

   (  √  )     (√    )     (√    )     (  √  )   

      (   (  √  )     (√    )     (√    )     (  √  ))     

    (  √  )     .√   
 

 
  /     .√   

 

 
  /     (  √  )   

      .   (  √  )     .√   
 

 
  /     .√   

 

 
  /     (  √  )/

   

   (  √  )     (  √  )     (  √  )     (  √  )   

      (   (  √  )     (  √  )     (  √  )     (  √  ))     

 
    (  √  )

 
 
    (  √  )

 
      (     )     

 
     √       

 
              

     (    √        )    

Case I:             
 

 
     {

   
 

 
    

  
 

 
   

 

 
 
 

 
   

     

Case II:     √               √             √   

    √    8
   

  
 

 
    

    , because     
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3.12 Solve in real numbers the system of equations: 

>

          

              

              

 

Solution:  

∑  
( )
  ∑   

( )
  ∑   

( )
  

Let        ( )           (  ) and           (  ) 

Now,  (  )  
( )
     and  (  )  

( )
     

  (  )  
 

 
* (  )+  

      
 

 
(    )   (using (1), (2))                  

              (    )    

       ( (    )        (    )   )          

  (  )  
   ( ) 

( )
  and  (  )  

   ( )
  (using (1), (2)) 

Again,  (  )  
 

 
( (  ))

 
 

   ( )
 (  (  )   ) 

  (  )    with equality at       and   (  )     equality occurs 

       

Putting       in (3), we get       

 

               and  ∑    all possible solutions are: 

 

(

   
   
    
    

,  (

   
    
    
    

,  (

   
    
    
    

,  (

    
   
   
    

,  (

    
   
    
   

,  (

    
    
   
   

,  
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3.13 Solve for real numbers: 

{
 

 
         

(     ) (
 

 
 
 

 
 
 

 
*  

  

 

          

 

Solution:  

if   (   - then 
   

   
           

if   (   - then            ( ) 

                  

So:            

Likewise, if   ,   -    (   - and   (   -    ,   - 

           if-f       

Then (     ) .
 

 
 
 

 
 
 

 
/  

  

 
 because (   ) .

 

 
  /  

  

 
 

     
 

 
   

  

 
  (  

 

 
*  

 

 
   

 

 
 
  

 
 
  

 

             

  
   √       

   
 
    

 
⟨

  

 
  

 

 
 
 

 

 

(     )  (     ) 

3.14 Solve for real numbers: 

{
 

 (   (  )   )  (   (  )   )  (     (
 

 
**
 

 (     (
 

 
**
 

          
       

 

Solution:  

(   )  (   )    (      )   (*) 

(   )  (   )    (      )   (**) 
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First equation is equivalent with: 

(   (  )   )  (   (  )   ) ⏟                    
( )

 (     (
 

 
**
 

 (     (
 

 
**
 

⏟                    
(  )

 

  (     (  )    )    (        (
 

 
** 

    (  )      .
 

 
/.       

 

 
  (sign “ “ not accepted) 

  
 

 
    . Second equation:         ;         

Let       (   )    √   
 

. Conclusion:  

Solution is (    √   
 

)   (   ) 

3.15 Solve for        : 

{
 
 

 
       

 

 

 (
 

        
 

 

        
 

 

        
*   (     )

      

 

Solution:  

Find all 

              
( )  

 
  .

 

        
 

 

        
 

 

        
/  
(  )
 ∑  and  

     
(   )

  

        
 

        
 

 

           
 

 

  (        )
  

 
 

        
 
( )  

  (        )
 and 

 

        
 

 

           
 

 

  (        )
 

   ( )  

   (        )
 

 
 

        
 
( )  

   (        )
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  (1) (2)  .
 

        
 

 

        
 

 

        
/   

  (
 

        
 

 

   (        )
 

 

  (        )
* 

 (
 

        
* (  

 

   
 
 

  
*  
       

 

     (
 

        
* (  

 

   
 
 

  
*   

 (
 

        
* (           )   

 (
 

        
* (        )    

  (
 

        
 

 

        
 

 

        
*    

   (  )
 

  ∑        
(  )  

 
 

(iv) (i)  (   )        
( )
   (  )  ( )    

 

 
 

   (   )
    

(  )
  

(v) (   )    (   )        
   (  )

(   )        
   (  )

 

 (   )      (   )      
(   )

  

(vi), (vii)        (    )(    )     

  
 

 
(    )  

   (   )
     

 

 
 

       
 

 
  (answer) 

3.16 Solve for integers: 

{
       

  (   )    (   )    (   )   
 

Solution: 

   (     )    (     )    (     )    (     )    (   )(   

  )    (     )  (     )( (     )    (     ))  (     )(   
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  )(  –   )    

 (     ) (     )    (  –   )                             

                                        

     ( )                                           

                                    

                 

     ( )                                           

                       

                                    

     ( )                                             

                           

                                    

     ( )                                               

                                 

                 

     ( )                                           

                       

                                    

     ( )                                             

                           

                                    

     ( )                                             

                           

                                    



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

86 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

     ( )                                             

                               

                                    

     ( )                                             

                              

                 

     ( )                                             

                               

                                    

                                  (     )            

                          (     ) (     )     (     ) (      ) 

3.17 Solve for        : 

{
 
 

 
       

 

 

 (
 

        
 

 

        
 

 

        
*   (     )

      

 

Solution:  

 ∑
 

        
  (     )   

  (
 

        
 

 

       
 
  

 
 

    
 
      

 
  

, 

  (
 

        
 

  

        
 

   

        
*   

  
        

        
    (     )        
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   (  

 

 
*
 

         
 

 
 

     
 

 
. So,       

 

 
 

3.18 Solve for          

{
 

 
 (        )   

 (
 

        
 

 

        
 

 

        
*   (     )

      

 

Solution:  

We know that        √   
        

 

 
 

We also know that: 
 

        
 

 

     
 

  

 
 

 

 
 
 
 
  

 
 

  

 
  

 

  
   

 
  

  (
 

        
 

 

       
 

 

        
*   

 
  

 

  
 
 

  
 
 

  
  (     )

 
 
     (     )

 
 
   (     )

 
  (1) 

      
 

 
  (     )     (     )     (     )   

 
   (     )

 
  (     )  (2) 

 
( ) ( )

  .
 

        
 

 

        
 

 

        
/   (     ), 

 but we know that: 

 (
 

        
 

 

        
 

 

        
*   (     )   

   
 

  
    

 

  
    

 

  
          

 

 
 

 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

88 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

3.19 Solve for real numbers: 

>

       
           

√  √  √       
 

Solution:  

With         we have: 

        √    √    √  
     

√  √      

 √      √            (*) 

    
(     ) 

  
             

(     ) 

  
 (     ) 

 (     )    (     )        

 
         

             (   )(        )    

               (**)  
( ) (  )

               . 

 (     )  (     ) (Answer) 

3.20 Solve for          : 

{

     
     

   
 
     

   
 
     

   
      

       

 

Solution:  

For all       we have: 
     

   
 
   

 
   (*) 

  (     )  (   )              

 (   )      (true) 

Equality      

So, 
     

   
 
     

   
 
     

   
 
   

 
 
   

 
 
   

 
       

“ ”        
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           (     )     ( ) 

 (    )(    )     ( )  (    )(    )     ( ) 

 
     

  
  

 
 (    ) (   

  

 
*     ( ) 

 (    )(   (  )      )     ( ) 

 (    )(     ( )      )     ( ) 

 
      

 (     ( )   )     ( )    

       (   )    ( )      (   )  (   )    ( )    

 (   )(   ( )   )        or      ( ) 

(*)                 

(*)      ( )              

 

3.21 Solve for real numbers: 

{
 

 
            , -                        

, -(  , -)           
 

 
 
 

 
 
 

 
 

 

(   )   
 

 

(   )   
 

 

(   )   

 

Solution:  

 (   )    (   )      ⏞
     

 √(   )     
 

  (   ) 

Similary: 

(   )     (   )    (   )     (   ) 

  
 

(   )   
 

 

(   )   
 

 

(   )   
 

 
 

   
 

 

   
 

 

   
 
 

 
(
 

 
 
 

 
*  

 

 
(
 

 
 
 

 
*  

 

 
(
 

 
 
 

 
* 

 
 

 
 
 

 
 
 

 
   (          

 

   
 
 

 
 
 

 
       * 
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    {
     

             
       

 

 
 

, -(  , -)            ⏞
     

, -(  , -)

    ( ) (    , -   ) 

( )  , -* +  (* +  , -)  , -* +  (, -)   , -* +  (* +)  

 (, -)  , -* +  (* +)    

But: 

, -     * +                 , -  * +        

So, 

(       )  (  
 

 
 
 

 
 
 

 
* 

3.22 Solve for real numbers: 

>
                 

 √    

 

√    

 

√    √   √      
 
    √      

 
   

 

Solution:  

 √    
 

√    
 

√    √    
   
   

 
     

   
   

 
    

    
 
   

 
         

 
      

 
    

   

 
   √       

    
( ) 

 

 
  ( )   

 

 
  ( )    ( )      

( ) 
 

 
  ( )      

( ) 
 

 
  ( )  (*) 

(*) satisfying when     

When       and         then: 

( )  
  ( )

  ( )
 
  ( )

  ( )
           

  *(   )  (   )+ 

From (*): 

    
( ) 

 
 
  ( )      

( ) 
 
 
  ( )      

( ) 
 
 
  ( )      

( ) 
 
 
  ( ) 
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Suppose:  ( )      
( ) 

 

 
  ( )     

  ( )  (  ( )  
 

  
  ( )*      

( ) 
 
 
  ( ) 

    -   , such that: 

 ( )   ( )  4  ( )  
 

  
   ( )5 (   )

                    

    -   ,           

 ( )   ( )  4  ( )  
 

  
   ( )5 (   )}

  
 

  
 

  

4  ( )  
 

  
   ( )5 (   )  4  ( )  

 

  
   ( )5 (   )    

4  ( )  
 

  
   ( )5 (   )  4  ( )  

 

  
   ( )5 (   )    

6  ( )  
 

  
   ( )    ( )  

 

  
   ( )7 (   )    

4
 

  
  

 

  
 5    ( )

⏟          
  

(   )    

So:          . 

3.23 Solve for real numbers: 

{
         

  (     )    (     )       (     )    (     )
 

Solution:  

               (           )   ( ) 

    
 

 
   ⏞

     

 √   
 

 
        

    
 

 
   ⏞
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   ⏞

     

     

            
 

 
   (           )    

               (           )   ( )      

                     
 

 
       (   ) 

                         √  

                                

              √  

 (       )  (       )    √  

                          

No solution. 

    {
    
    

   {
    
    

   {
    
    

                   

No solution. 

                (          )                   

          no solution. 

               (          )                    

        

                     √  

 (       )  (        )(          )     √  

 

3.24 Solve for complex numbers: 

>

  

   
 
  

   
 
  

   
 

(     ) 

(        ) 
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Solution:  

  

   
 
  

   
 
  

   
 

  

(  ) 
 
  

(  ) 
 

  

(  ) 
 ⏞

     (     ) 

(        ) 
 

Equality for 

 

 
 
 

 
 
 

 
       

                       

(       )(      )    

                 √  

              
    √ 

 
 

3.25 Solve for real numbers: 

{
 

 
        

      

 (   )(   )
 

      

 (   )(   )
 

      

 (   )(   )
  

      

 

Solution:  

Let ∑       ( )  ∏         ( ) 

From second questions (+(1),(3)) we get: 

 ∑
        

  (   )(   )
   

   ∏(   )                                      

                           

   ∏(   )      (   )    (   )(   )    (     ) 

   ∏(   )   (   )(   )(   )(        ) 

   ∏(   )   ∏(   ).∑  / 

If     or     or     no real solution! 
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System become {
        
           

      
        solution of the equation: 

                 

(   )(   )(   )    

Solution are (     ) and permutations. 

3.26 Solve for real numbers: 

{
 

 
           

     (   )

(   )(   )
 
     (   )

(   )(   )
 
     (   )

(   )(   )
  

      

 

Solution:  

                    

                   

     (   )

(   )(   )
 
     (   )

(   )(   )
 
     (   )

(   )(   )
    

  (
 

(   )(   )
 

 

(   )(   )
 

 

(   )(   )
*   

 4
  (   )

(   )(   )
 

  (   )

(   )(   )
 

  (   )

(   )(   )
5     

  4
 (   )  (   )  (   )

(   )(   )(   )
5   

 4
  (   )

(   )(   )
 

  (   )

(   )(   )
 

  (   )

(   )(   )
5    

4
   (   )(   )    (   )(   )    (   )(   )

(   )(   )(   )
5    

  (     )    (     )    (     )    (   )(   )(   ) 

            (           )

  (                       )    
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(   )(   )(   )(       )   
           
⇔                   

        

So, by Vieta’s Theorem: 

                

(     )  (     ) and cyclic. 

3.27 Solve for real numbers: 

>

      , -                        
(   )(   )   

√, -  , -  √(  , -)(  , -)  √  

 

Solution:  

Because: 

           , - , -          , -   , - 

* +    , - * +    , -   

Now, 

√, -  , -  √(  , -)(  , -)  √, -  , -  √* +  * + 

 ⏞
   

√.√, -
 
 √* +

 
/  .√, -

 
 √* +

 
/  √(* +  , -)(* +  , -)  √   

Equality for  

           {
   
   

    2
   
   

    {
  , -

  , -
 

If          (   )(   )              

If           (   )(   )          
 

 
   

(   )(   )   
     
⇒    (   )(   )    

                

{
 
 

 
 
    

   √  

 

    
   √  
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But:           
   √  

 
 

  , -       , -     

 (   )(   )      
 

   
  

    

⇒       *   +
      

⇒            

So, 

(   )  8(   ) (
 

 
  *  4

   √  

 
 
   √  

 
59 

3.28 Solve for real numbers: 

>

         
 

     
 

 

     
 

 

     
      

 

 
    

 

Solution: 

Let:   (     )  
 

     
 
 

 
     

  (     )  
 

     
 
 

 
     

  (     )  
 

     
 
 

 
     

 (     )    (     )    (     )    (     ) is convex function. 

  *                 + is a closed convex set  

 (     )  
 

 
     is the greatest value, then  (     )  

 

 
     is sum of 

there convex functions is convex.Let’s prove   (     )  
 

     
 
 

 
     is 

convex.  ( ) is a positive semi definite matrix. 

(

 
 
 
 

    
 

(     ) 
    

 

(     ) 

   
 

(     ) 
  

(     ) 
    

  

(     ) 

    
 

(     ) 
    

  

(     ) 
     

  

(     ) )
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Therefore,         is only solution for the given equation. 

3.29 Solve for real numbers: 

{
    , -    

   , -   , -    
 , -  great integer function. 

Solution:  

{
    , -        ( )

   , -   , -     ( )

 {
       , -   

      , -   , -   
 {
  , -

  , -
       

Let: , -     
( ) ( )
⇒                  

(     )  *(, -         , -  )     + 

3.30 Solve for real numbers: 

{
           

   (     )                  
 

Solution:  

From second equation        , since            we conclude: 

        

.
     

 
/
     

  .
 

 
/
 
.
 

 
/
 

 ;(1) 

 .
 

 
/
 

.
 

 
/
 

 
     

(
     

 
*
 

 

  
     

 
           ;(2). From (1),(2) we have: 

{
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COMPLEX NUMBERS 

 

4.1 For        , satisfy:                  . Prove: 

           *         +     *         + 

Solution:  

                         for some    . Now,  

         (   )     (   )    

If    , then                ,  

and         (   )                          

    *         +     *         + 

If                       and 

                   (   )                

              *         +     *         + 

 

4.2 Solve for complex numbers: 

|  
 

 
 
 √ 

 
|

 

 |  
 

 
 
 √ 

 
|

 

                

Solution:  

Using   . 
 

 
 
√  

 
/     . 

 

 
 
√  

 
/ 

The given equation reduces to 

                              

We know that 

        ̅          (    )(    ̅̅ ̅̅ ̅̅ ̅̅ ̅)  (    )( ̅   ) 

   ̅      ̅               ̅        (1)  *     + 

Here,   is the cube root of unity 
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       (   )(   ̅̅ ̅̅ ̅̅ ̅)  (   )( ̅   ̅)  (   )( ̅    )   

   ̅       ̅               ̅       (2) 

       (   )(   ̅̅ ̅̅ ̅̅ ̅)  (   )( ̅   )          ̅      (3) 

  Adding (1); (2); (3): 

                     

        (      )   ̅(      )    

*         +          

                               

                                  (4) 

But we have: 

                                (5) 

So, from (4) and (5)     . 

4.3 If          then: 

                 
 
       

Solution:  

√
 

 
       

 

 
       ⏞

           

√
 

 
       

 

 
      

 

  (   ) 

 

 
       

 

 
       

 

 
 
 

(             )  
 

 
 
 

     

 

 
       

 

 
       

 

 
 
 

                      
 
      

 

4.4 If     |    |         then:       √  

Solution:  

Let                      

Now,                (       )             (    )    
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 (       )             (    )  

 (     )     (     )         (     )       

 (     )    (     )            

 (        )            

     4(  
 

 
*
 

 
 

 
5      (  

 

 
*
 

     

                            

                                   √  

4.5                                

                  (  )  (  )  (  ). If 

                                   

then      is an equilateral one. 

Solution:  

                           (        ) 

  |   
        

 
|   |   

     
 

|        
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            ( ) 

                      
 (       )     

 
  

 
 (         )              

 
 
           

 
  

 
          

 
 ∑    

          

 
   

 ⏞
          

 
   

         ⏞
   

√ ∑   

   

 √           ( ) 

By ( ) ( )                   

 

4.6            – regular polygon,           

  (  )   (  )     (  )           ̅̅ ̅̅ ̅ 

If  ( ) – centre of polygon and exists        ̅̅ ̅̅ ̅     such that  

     ̅    ̅       then   is divisible with 4 

Solution:  

 

In order to avoid confusion with imaginary number  , we use   instead of  , so 

that: 
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    ̅̅̅      ̅          (1).  We have      
    

       
    

  

Now, (1) gives  
    

    
    

   
    

   
    

    

  
   (   )

   
   (   )

        4
  

 
(   )5    

  

 
(   )  

 

 
 
  

 
 

            .  If         , we are done. 

If          , then                   ,   [   is prime] 

Let         , where              is a multiple of  . 

 

4.7          (        
   )  (        

   )   

 (        
   )   (  )  (  )  (  )           . Prove that: 

                  

Solution:  

Let            
               

               
    

Let                         

     is equilateral (     )
  (     )

  (     )
   . Now,  

            
               

    

             
   

 (     )
  (     )

  (     )
  

                                

                                

                               

 (        )(       )  (          )(        )  (1) 

As                    (        )  (2) 

  From (1), (2), we get: 

(     )
  (     )

  (     )
  (        )(       )   

  (      )(        )   
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 (        )(               )

 (        )(         ) 

 (        ),      (   )-

 (        )(   )(   )(      ) 

 (        )(   ) (      ) 

Now,      is equilateral (     )
  (     )

  (     )
    

 (        )(   ) (      )    

As     and         , we get             

 (     )
  (     )

  (     )
         is equilateral. 

 

4.8                                      

                              

                

Prove that:         

Solution:  

    (                           )

 (                            )

 (                            )   

                          

                          

                            

                                

      

4.9            * + different in pairs 

                  (  )  (  )  (  ) 

  (     )
 

        
 
  (     )

 

        
 
  (     )
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Prove that:         . 

Solution:  

If:                   (  )  (  )  (  ) 

  (     )
 

       
 
 
  (     )

 

       
 
 
  (     )

 

       
 
        

 

 

  
  (     )

  
 

  
  (     )

  
 

  
  (     )

         

 

  
  (  

    
       )

      
 
 

  
  (  

    
       )

      
 
 

  
  (  

    
       )

      

   

 

  
 (
  
  
 
  
  
  *  

 

  
(
  
  
 
  
  
  *  

 

  
(
  
  
 
  
  
  *    

 

  
:
  
  
 

 

.
  
  
/
  ;  

 

  
:
  
  
 

 

.
  
  
/
  ;  

 

  
:
  
  
 

 

.
  
  
/
  ;    

|
  
  
|    

  
  
 (
  
  
*

̅̅ ̅̅ ̅̅
   

 

.
  
  
/
 (
  
  
*

̅̅ ̅̅ ̅̅
 

 

  
(
  
  
 (
  
  
*

̅̅ ̅̅ ̅̅
  *  

 

  
(
  
  
 (
  
  
*

̅̅ ̅̅ ̅̅
  *  

 

  
(
  
  
 (
  
  
*

̅̅ ̅̅ ̅̅
  *    
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(    (   (

  
  
**   *  

 

  
(    (   (

  
  
**   *

 
 

  
(    (   (

  
  
**   *    

 

  
(   (     )   )  

 

  
(   (     )   )  

 

  
(   (     )   )    

 

  
(   (     )   )  

 

  
(   (     )   )  

 

  
(   (     )   )    

   (     )    

 

        ( )( )    (     )           (     ) 

    (     )     
     (     )    

  

 
 

 

  
4  

  

 
5  

 

  
4  

  

 
5  

 

  
4  

  

 
5    

 

  
   

 

  
   

 

  
     

 

  
 
 

  
 
 

  
   

 

  
 
 

  
 
 

  
   

.
 
 
/
 

 .
 
 
/
 

 .
 
 
/
 

 
 
.
 
  

 
  

 
 
/
 

 
 

(
 

 
*
 

 (
 

 
*
 

 (
 

 
*
 

 
 

 
(
 

 
 
 

 
 
 

 
*
 

 

 

 
(
 

 
 
 

 
 
 

 
*
 

   (
 

 
 
 

 
 
 

 
*
 

   

 

 
 
 

 
 
 

 
 √  

 
  

 
  

 
 

 
 √

 

   

 

 
 

 
 
 

 
 
 

 
  √
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√   √
 

   

 

 √  
 

√   
  

 

√ 
 √   

 
 √  

     √                       √      

               √                 
 √ 

 
 

But as we know:              
 √ 

 
. So:                

 √ 

 
 

Equality holds when           

So:      is equilateral. 

4.10                          

                              

                

Prove that:       

Solution:  

                                            

                                          (Q.E.D.) 

Let’s prove that                             , let           

         and           

 √  
    

  √  
    

  √  
    

  

√(        )  (        )   (?) 

From Minkowski’s inequality we have that 

√  
    

  √  
    

  √(     )  (     )   √  
    

   

 √  
    

  √  
    

  √  
    

 

 √(     )  (     )  √  
    

   

 √(        )  (        )     (Q.E.D.) 
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4.11 If     * + then: 

       |  
   √ 

 
|

 

 |  
   √ 

 
|

 

  (            )  

Solution:  

Let                  ( ̅)    

  |  
  √  

 
|

 

                 ( ̅  )    

  |  
  √  

 
|

 

                ( ̅ )    

               ( ̅(      ))             (      ) 

Now, 
        

 
 .

     

 
/
 

 (      )                        

  (      )   (            ) 

 

4.12            * +                                     

 (  )  (  )  (  ) Prove that: 

 

      
 ∑

  
(     ) 

   

            

Solution:  

 

      
 

  
(     ) 

 
  

(     ) 
 

  
(     ) 

             

  
  
     

(     ) 
 

  
     

(     ) 
 

  
     

(     ) 
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>

      
      
      

 {
    ̅   
    ̅   
    ̅   

 
  
  
 
  
  ̅

̅
   

  
  
 
  
  ̅

̅
 (
  
  
*

̅̅ ̅̅ ̅̅
 

(
  
  
* (
  
  
*

̅̅ ̅̅ ̅̅
   |

  
  
|    

  
  
 

.
  
  
/

̅̅ ̅̅ ̅̅
 
  
  
  

 
  
 

.
  
  
/

̅̅ ̅̅ ̅̅
 
  
  
  

 
  
 

.
  
  
/

̅̅ ̅̅ ̅̅
 
  
  
  

   

{
  
 

  
 (
  
  
*

̅̅ ̅̅ ̅̅
 
  
  
         

(
  
  
*

̅̅ ̅̅ ̅̅
 
  
  
         

(
  
  
*

̅̅ ̅̅ ̅̅
 
  
  
         

 >

      (     )

      (     )

      (     )
 

  
  
 

 (       )
 

  
 

 (       )
 

  
 

 (       )
   ( ) 

                   

                       
             

            

Subbtituted in relation (i), we obtain: 

  
  
 

   
 
  
 

   
 
  
 

   
   (  ) 

  
 

  
 
  
 

  
 
  
 

  
   

  |
  
 

  
 
  
 

  
 
  
 

  
|  

|  
 |

  
 
|  
 |

  
 
|  
 |

  
 

 

  
 
 

  
 
 

  
   

                      

                        

   (                                )                    

                                                   (   ) 
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The triangle     is equilateral. 

4.13            * +, different in pairs,  (  )  (  )  (  ), 

                . If  
  

        
 

  

        
 

  

        
 
 

 
   

then:          

 

Solution:  

(
  

        
 
 

 
*  (

  
        

 
 

 
*  (

  
        

 
 

 
*    

(
            
 (        )

*  (
            
 (        )

*  (
            
 (        )

*    

        
 

(
 

        
 

 

        
 

 

        
*    

 

 
  (

 

            
 

 

            
 

 

            
*    

 

 
  (

 

       
 

 

       
 

 

       
*    

 

 
  6
   
                       

                       
                   

(       )(       )(       )
7    
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  6
    

                                        
(       )(       )(       )

7    

There are two cases:      

or:     
    (        )                         

    
      

   (              )    

   
   (              )    

  
 

 
(              ) 

  
  

 

 
(      ) (

 

  
 
 

  
 
 

  
*    

  
 

 
(      )(  ̅    ̅    ̅) 

    
  

 

 
   ̅    ̅    ̅      

  
 

 
     ̅̅ ̅  

    
  

 

 
          

 

 
 
 

 
 
          

 
                

   . This is impossible, so:                        

    , so:     

Note: center of circle and centroid has the same point so the triangle     is 

equilateral triangle. 
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4.14 If            * +, different in pairs,                 , 

 (  )  (  )  (  )  

∑   (     )
 

          
          then:         . 

Solution:  

                 

∑  (     )
        

           
   

 

  (     )
        

    (     )
         

    (     )
        

 

         

       
  (     ) (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (     )(  ̅    ̅) 

      ̅       ̅       ̅       ̅ 

(            ̅   ) 

       
         ̅       ̅ 

   (     )
    (  

           
 )       

                 
  

  (     )
         

  (     
              

 )(      ̅      ̅) 

  (     )
         

 

        
 4

    
 

      
   

    
 

      
5(      ̅      ̅) 

 (
  
  
   

  
  
* (      ̅      ̅) 
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  ̅
    

 

  ̅
     

 

  ̅
   ̅  

 

  
       ̅  

 

  ̅    
 

 

 
 
  
  
 
  
  
                   

 
 

 
        

      
       

 
 

 

  (     )
        

 

      
 (      ̅      ̅)(      ̅      ̅) 

 (      ̅      ̅̅̅ ̅̅ ̅̅ )  (      (     ))
  , (     (     ))-

  

  [     (
     
 

*]
 

       (
     
 

* 

  [    (
     
 

*      (
     
 

*      (
     
 

*]    

  6
(    ) 

  
 
(    ) 

  
 
(    ) 

  
7    

(    )  (    )  (    )    

     ,      ,        ,          

  (    )     

  This equation holds only when       √  
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     ,       ,       ,   (   )    

  
  

 
   ,     

  

 
,   

    

 
,  

√    

 
 

   (
     
 

*  
√    
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ABSTRACT ALGEBRA 

 

5.1 Find   .
         
        

/     , such that: 

                    

Solution:  

  .
         
        

/ 

   ( )                    exists and     .
        
         

/ 

Let         .
      
       

/ 

Given equation is                     

             
           

       (     )         

 (     )   (     )         (   
      )

   

 (     )
     

 .
        

        
/
 

     (
(      )  

 (      ) 
*    

 (      )                    .
  
  

/     

 

5.2 Find     ((   ))   .
  
  

/ such that: 

        
 

 
 
 

 
   (    )   (    )           

Solution:  

(    )   (    )           (    ),(      )   -    

As,    ( ) is real, we get    ( )            or       

Now,                    (1) 
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Also, √   
 

 

 
.
 

 
 
 

 
/
 
 
 

 

        

           (2) 

As (1) and (2) contradict each other, no such matrix exists. 

5.3 Find   .
   
  

/                such that: 

                    

Solution:  

If we use        .
   
  

/        as field isomorphism of   onto  

  2.
   
  

/|      3 then   .
   
  

/ will make the equation as: 

                     
 

  
  (  

 

 
*      

 .  
 

 
/
 

  .  
 

 
/        

 

 
   or   

 

 
   

         or     

In this case      , and corresponding matrices became: 

:

 

 
 
√ 

 

√ 

 

 

 

;  :

 

 

√ 

 

 
√ 

 

 

 

; or .
  
  

/ as identified earlier. 

 

5.4 If     ( )        (    )
     (  ) then: 

  (  )           (   ) 

Solution:  

We will note the eigenvalues of              . We have: 

                
   (  )    

    
    

    
  (           )

 

  (  
    

    
    

 )   

  (                             )   (  
    

    
    

 ) 
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   (           ) 

 (           )(                             )

 ∑   ∑  

     (     )      (     )      (     )      (     )

     (     )   

     (     )      (     )      (     )      (     )

     (     )   

     (     )      (     )

   
    

    
    

  ∑     (     )

       

 

   
    

    
    

                                  

 

        
    

    
    

 

             

       
 

  
 
 

  
 
 

  
 
 

  

 (    )(      )

                             

        (    )(      ) 

 

5.5 Find           such that: 

.
        
        

/
 

 .
          

          
/       * + 

Solution:  

For simplicity, we will note in                         . Thus, the 

condition can be written as: .
  
  

/
 

 . 
   

    
/       * + 

For     we have: 

.  
  

/ .  
  

/  . 
   

    
/  (

      (   )

 (   )      
*  . 

   

    
/ 
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          or    . 

I.    . That means the only equality left is (    )     

If     then the matrix .
  
  

/ satisfies the identity in the hypothesis. (for any 

diagonal matrix .
   
   

/  .
  
  

/
 

) 

If          . For     we have: 

.  
  

/
 

 . 
   

    
/  .

  
    

/
 

 (
   

(   )   
*  . 

  
   

/ 

 (
   

 (   )    (   )   
*  (

   
(   )   

* 

Thus, we have: 

 (   )    (   )  (   )   (   )          

           

          or      

If       or       then the matrices .
  
  

/ and .
  
  

/ satisfy the 

identity in the hypothesis. 

Thus, in this case the matrices .
  
  

/  .
  
  

/ and .
  
  

/ satisfy the 

identity. 

By applying the same algorithm we obtain the solutions: 

.
  
  

/ (duplicate), .
  
  

/  .
  
  

/ 

Thus, the matrices .
  
  

/  .
  
  

/  .
  
  

/  .
  
  

/ and .
  
  

/ are the only 

ones which satisfy the identity above,          . Thus, the solutions for 

        are: 

I.            
 

 
                       

II.                 
 

 
            and      
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III.            
 

 
      

 

 
            

 

 
      

IV.                 
 

 
       

V.                                 

 

5.6 If     ( )      
            then find: 

     (     ) 

Solution:  

              
              

                          ⏟                  
  

             

   (   ) 4 
      ⏟        

   

5 

                

                                                                                             

                                                                        

                                                             /             

                                                                          

                                                                    

                                                             /       

                                                                    

                                                                  

                                                                          

Then (Frobenius) 

  ( )     (     ) and    have the same ireductible divisors. 

So,   ( )  (   )
 (       )  (  )    (     ) 

with        

 (  )  (  ) (     )  (  )    (     ) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

119 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

(  )    (     )  (  )
      

   (     )  (  )
  (  )  (  )        (     )  (  )

 (  )     

   (     )  (  )
 (  )      (     )   

  

 

5.7       ( )  
               .

   
   

/ 

Find: 

     
   

√
   (    )

   (    )

 

 

Solution:  

    ( )  
       .

   
   

/    

           
         
          

}        

  .
  
  

/  
   .

  
  

/ .    
   

/  .
       
       

/

   .
   
   

/ .
  
  

/  .
      
        

/
}   

          .
  
  

/   

   (

(   )  (   ) 

 

(   )  (   ) 

 
(   )  (   ) 

 

(   )  (   ) 

 

, 

           

{
 

 
(   )   (   )  

 
 
(   )   (   )  

 
  

(   )   (   )  

 
 
(   )   (   )  

 
   

 

 (   )   (   )           unique solution      

 (   )   (   )             
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  :

 

 
 
 

 

 
 

 

 

 

;. The same for    :

 

 
 
 

 

 
 

 

 

 

; 

√
   (    )

   (    )

 
 √

 

 

 
   constant sequence. 

    

5.8 If     ( )         
  (   )     then:      

Solution:  

   (   )       
         

  

                
      . But         etc 

Irreducible in  , - 

(        (   √    )(   √    )   

 .  
 √   

 
/.  

 √   

 
/ .  

√   

 
/ .  

√   

 
/ ) 

     
       

Then, according to Frobenius 

   ( 
      ) 

              
|           

5.9       ( )  

 4  √    √ 5 (     )  (√   )(     )  

If    (     )    then   is divisible with   . 

Solution:  

We know that    
 

  
 
√   

 
 

    
 

  
     

 

  
   4

√   

 
5

 

     
 

  
    

    
 

  
 
      √ 
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    √ 

  
    

 

  
 
√    √ 

 
 

Then .     
 

  
/ (     )     

 

  
(     ) 

     
 

  
(     )      

 

  
   

 

  
(     ) 

   
 

  
(     )     

 

  
(     ) 

         
 

  
(     ) 

      (    )(    )         

 (    )(    )   (     ) 

So, (    )(    )         (     ) 

    
 

  
(     )   (     )  .   

 

  
  / (     ) 

   ,(    )(    )-  .   
 

  
  /

 

    (     )⏟        
 
 

 

   (    )   (    )  :
   

 
  
     

 
  

   
 
  

;

 

   (     ) 

   (    )   (    )  :
      

 
       

 
  

   
 
  

;

 

   (     ) 

    (     )  
(  )  .   

 
  
     

 
  
/
 

.   
 
  
/
    

    
  

  
   

  

  
          

 

5.10       ( )    (   (     )
 )   . Find: 

      (     )        ((     )
 ) 
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Solution:  

Let be   (   )     ̅̅ ̅̅
     

   (   )     ̅̅ ̅̅
     

 

Let be          ∑       
 
        ∑    

 
       

Let be          ∑    
 
           ∑       

 
    

Let be      (      )      ∑ (             )
 
    

   (     )       ∑∑(             )

 

   

 

   

  

 ∑∑      

 

   

 

   

  ∑∑      

 

   

 

   

   

So,        

   (    
 )     (     )     ( 

  (   )
 )   

    (     )    (     )      ( )  ( 
   )(   ) but 

  ( )   
        

(    )       

 
       

  ( )   
                   

  
(    )       

 
                   

         

     and       

 

5.11     ( )            ( 
    )   . Find:      (  ) 

Solution:  

   (     )     (     )    (     )    

   or –   root of   ( ), the characteristic polynomial of  . But   ( )   , - 

Then,   and –   roots of   ( ) 

Let be    and    the other roots of   ( ) 
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We have   ( )   
               

                   

           
                      

                 
     

          

               

  ( )   
  (     ) 

  (      ) 
  (     )       

  ( )      
  ( )      

}           

  ( )   
  (     ) 

  (     )    

  ( )   
     ( )     (  )           

So,           

5.12 Find     ( ) such that: 

        (
   
   
   

+ 

Solution:  

 

          (
   
   
   

+  (
   
   
   

+  

(
   
   
   

+(
   
   
   

+  (
   
   
   

+(
   
   
   

+ 

 {
     

       
   

   (
   
   
   

+ 

So, 

  (
   
   
   

+          
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        (
   
   
   

+     (
    

   
   

+         

    (     )
  ∑.

 

 
/ (   )

     
 

   

 

 .
 

 
/    

  .
 

 
/      

     .
 

 
/      

      

     (
         

 (   )

 
   

      
    

, 

             (
               

         )

 
   

         
    

,

 (
            

      
    

+  (
   
   
   

+ 

 

 {
          

                
                                     

 

We have: 

             

Let  ( )               ( )               

         √
 

    

    

 

a -

                                                                      

f(a)             (  )                
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                (
 

    
*
 

    (
 

    
*
 

   

   
 

     
(           ) 

So,  

  

(

 
 
 

 

    
 

 

     
(           )

  
 

    
   )

 
 

 

 

5.13     ( )    
           . Find:     (     ) 

Solution:  

    ( )     
                 ( 

    ) 

   (   )    (    )                   
  

     
                      

 

    
                

                           

1)        

                     
           

2) If         

            

Let be the spectrum   *           +    

Then the spectrum     2
 

  
 
 

  
 
 

  
 
 

  
3 

and as   
       the spectrum of   

  2
 

  
 
 

  
 
 

  
 
 

  
3 

But      
    

 

  
 
 

  
 
 

  
 
 

  
   

                            

So, if 1)                
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if 2)                

1)       (  )       (   )
          

2)       (  )        
          

So,                

1)               
              

    

2)             
             

    

3)  

5.14 Let be     ( ) Prove that: 

   (     )             and           adjoint of   

Solution:  

    ( ) 

   (     )       (       )     

   (     )(     )       (     )    or    (     )    

   or –   are roots for    

   ( )   
                      

  ( )  (   )(   )(   )      

  ( )  (   )( 
   )    ( )   

          

          and        

 

5.15 If       ( )                   (  )    then: 

   .(    
     (  ) )(    

     (  ) )(    
     (  ) )/    

Solution:  

                              

  (    )  (    )     (    )(    )     that mean  

                  

(    )(    )                               



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

127 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

and (    )(    )         ( ) 

    
     (  )      

              
    (    

 ) 

 (    
 )(    

 )  (    )(    )(      
 )(      

 ) 

 ⏞
( )

(      
 )(      

 )     ( ) 

    
     (  )      

              
    (    

 ) 

 (    
 )(    

 ) 

 (    )(    )(      
       )(      

       ) 

 ⏞
( )

(      
       )(      

       )    ( ) 

    
     (  )      

              
    (    

 ) 

 (    
 )(    

 ) 

 (    )(    )(      
             )(      

     

         )   

 ⏞
( )

(      
             )(      

           

  )   ( )   

From (2)+(3)+(4) we must show: 

   (      
 )   (      

       )   (      
       

      )   

    (      
 )   (      

       )   (      
     

        )    true because 

   (      
       )     (article-R.M.M.-22) 

http://www.ssmrmh.ro/2019/01/24/old-rmm-22/ 

5.16       ( )  
      

            

  :

    
      

     
     

     
      

      
      

; 
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Prove that:    .(     )(     )/    

Solution:  

   ((     )(     ))     (                 ) 

    (     (       )     )     (           )

    (      )     ( ) 

I was working in       

 ̂  (

 ̂  ̂
 ̂  ̂

 ̂  ̂
 ̂  ̂

 ̂  ̂
 ̂  ̂

 ̂  ̂
 ̂  ̂

, 

   ( ̂)   ̂  |
 ̂  ̂  ̂
 ̂  ̂  ̂
 ̂  ̂  ̂

|   ̂  | ̂  ̂
 ̂  ̂

|   ̂ 

 (   ( ))       ( )     

. 

5.17  (     )  (     )  (     ) belongs to              . 

Prove that: 

|
   
   
   

|

 

    

Solution:  

Let  ̂ be unit vector along   ⃗⃗⃗⃗  ⃗  ̂ along   ⃗⃗ ⃗⃗  ⃗ and  ̂ along   ⃗⃗⃗⃗  ⃗, then 

  ⃗⃗⃗⃗  ⃗    ̂    ̂    ̂    ̂    ⃗⃗ ⃗⃗  ⃗    ̂    ̂    ̂    ̂   

  ⃗⃗⃗⃗  ⃗    ̂    ̂    ̂    ̂ 
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Now, |
   
   
   

|

 

 [  ⃗⃗⃗⃗  ⃗   ⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗]
 
 [  ̂   ̂   ̂]

 
   [ ̂ ̂ ̂]

 
. But 

[ ̂ ̂ ̂]    volume of parallelipiped with sides  ̂  ̂  ̂  [ ̂ ̂ ̂]
 
   

 |
   
   
   

|

 

    

 

5.18 In       the following relationship holds: 

|

      

    
      

      

|       √.∑     / .∑     / 

Solution:  

|

      

    
      

      

|  |

      

    
           

           

|  |
   
          

          
|

  

                               (     )(     )   

  (              )  (        )   (1) 

From (1) we must show this: 

 (              )  (        )       √(∑      )∑         (2) 

From Cauchy inequality   

√∑      
 

√ 
(∑     ) and √∑      

 

√ 
(∑     )   (3) 

From (2) (3) we must show this: 

 (              )  (        )  
 

 
    (∑     )(∑     ) (4) 

But ∑     
     

  
  (5) 
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∑     ∑
        

   
 
∑ (        )

    
   (6) 

From (4) (5) (6) we must show this: 

 (              )  (        )   

 
 

 
(     )(                                )   

 (              )   (        )              (   )   

   (   )    (   )   (     )   (     )   (     )   

   (     )    (     )    (     )     (   )     (   )

    (   )

  (        )   (              )

     (     )     

 

           (              )     (     )     (7) 

 

             (     )   (              )   (8) 

By Schur’s inequality we have: 

            (     )    (     )    (     )  

  (     )   (9) 

From (8) (9) we must show: 

  (     )    (     )    (     )   (              )  (10) 

But   (     )                  which its true. Similarly: 

  (     )      and   (     )         (10) its true. 

 

5.19 In       the following relationship holds: 

|

    
    
    
    

|        
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Solution:  

        |
   
   
   

|     |
   
   
   

|   |
   
   
   

|   

  * (   )   (   )      +   *  (   )   (     )+   

  *  (  )   (     )+   (           )   (          )   

  (           )

   (        )    (        )    (        ) 

                                    .∑     /   

      (                 )                     

        ( 
   

   
*    

        

  

        
   √  

              

 

5.20 If               then: 

  |
|

     
     
     
     
     

|
|  (   ) (   ) (   ) (

 

  
 
 

 
 
 

 
 
 

 
 
 

 
* 

Solution:  

Let     |
|

     
     
     
     
     

|
|. Expanding this determinant, we get 

    (                            )  

          (
 

  
 
 

 
 
 

 
 
 

 
 
 

 
* 
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  (   )(   )(   ) .
 

  
 
 

 
 
 

 
 
 

 
 
 

 
/. By AM-GM: √   

   

 
 

    (   )  

√   
   

 
     (   )  √   

   

 
     (   )   

   (   ) (   ) (   ) (
 

  
 
 

 
 
 

 
 
 

 
 
 

 
* 

5.21 If     ( ) then: 

   (         )  (      )
  

Solution:  

Let   .
  
  

/            

          (    )
     (        )(        ) 

 (        )(        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

   (         )     (  (   )  ) (  (   )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

    (  (   )  )    (  (   )  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

     (  (   )  ) 
   

 ||
  (   )  

   (   )
||

 

  (   )  (   )(   )          

  (         )  (     )    (  (   ))
 
 (      )  

 

5.22        ( )                

   (    )     (    )   .Find:      (    
   ) 

Solution:  

Let       . As   ( )   , we take   .
  
    

/ 

     ( )   (   )     

   (      )     (   )  |
    
    

|  (   )(   )     
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Now    (      )     *   (      ) +   

    (      (      ))    ( )  (   ( ))  (    )   ( ) 

 ,   ( ) (   ( ))  -  ( )  (   (    ))  ( )  ( )( )    

 

5.23 If       ( )  
       

          
  then: 

   (  )    

Solution:  

             , 
 (    )-     (   )  (    )

     (    )  

              (1) 

             , 
 (    )-     (   )  (    )

     (    )  

              (2) 

Now,            
         

              
             

                       
      

                 
    (   

 

 
  

 

 
  *   

         [  (   
 

 
  

 

 
  *]

 
(    )  (  )     (   

 

 
  

 

 
  *

      (   
 

 
  

 

 
  *   

}   

 (    )             (3).  Now,            
         

(         )                 
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    (   

 

 
  

 

 
  *      ( 

 )

    [  (   
 

 
  

 

 
  *]   

(    )  (  )    .   
 

 
  

 

 
  /

   .   
 

 
  

 

 
  /   

?  (    )    (    )     (4) 

From (1) (2) (3) (4)         and           (  )   . 

Observation:     ( )   (   )     ( 
        )    

because     .      
  

 
   

  

 
      /   

    6.  
 

 
  /

 

 
      

 
  7     <.  

 

 
  /

 

 (
√     

 
+

 

  
 = 

    <.  
 

 
  /

 

   (
√     

 
+

 

  
 =   

    [(  
 

 
    

√     

 
  +(  

 

 
  
√     

 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  +]    

 

5.24  If       ( )  
       

          
  then: 

   (  )    

Solution:  

           
 (    )       

 (    )     (    )   
           (1) 

              
     (      )   

(    )     (  √    ) (  √    )   

(    )     (  √    )     (  √    )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (2) 

From (1) (2)         (3) 
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 (    )       

 (    )     (    )   
           (4) 

              
     (      )   

 (    )     (  √    ) (  √    )   

 (    )     (  √    )     (  √    )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (5) 

From (4) (5)    ( )      (6) 

From (3) (6)     (  )    

5.25 Find       ( ) such that: 

          (   )       (   )       (    )    

Solution:  

Suppose that   and   satisfy the proposed conditions. Let        and let 

 ( )     (     )   
     ( )     ( ) 

be the characteristic polynomial of  . The proposed inequalities yields 

 ( )  
   (   )

    
   

 (  )  
   (    )

    
 
   (   )

    
   

 (  )  
   (     )

    
 
   (    )

    
   

But  ( ) is positive for large    , so the above conditions imply the second 

degree polynomial   has at least   zeros and this is absurd. Thus, no such 

matrices exist. 

5.26 If     ( )               then: 

   (  )   (    )(      ) 

Solution:  

Let   (   )      
( ) and    ( )       ( )   . 

Let  ( )                  be the characteristic polynomial of  .  
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Then      ( )    and      ( )   . 

  ( )              

We have 

                (1) 

                

   (  )      ( )         (   )        (   )  (1) 

Let             be eigen values of  , then 

∑     ∑       

Let   be an eigenvalue of          such that        

   ( )   (  )   (  )       (  )      

Similarly,           is an eigenvalue of   . If     exists, then 

   (  )     (  )            

     is an eigenvalue of    . 

If             eigenvalues of  , then                ( )   . 

Now,   (  )    
    

    
    

  (     )
       (     )  

(     )
       (     ) 

 (      )
       (     )  (     )

       (     ) 

,              - 

          (
 

  
 
 

  
 
 

  
 
 

  
*      ( )    (   ) 

[             ( )        ( 
  )  

 

  
 
 

  
 
 

  
 
 

  
] 

∑                     

Note  

   .
 

  
 
 

  
 

 

  
 
 

  
/     ( )    (   )  (2) 

From (1), (2):   (  )      ( )    (   ) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

137 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

5.27 If       ( )    (   )    then: 

   (             )     (  ) 

Solution:  

If    ( )    or    ( )   ,  

then    (   ( )     ( ) )       ( )    ( ).  

Suppose    ( )       ( )   . Let   (
    
    

*    (
    
    

* 

Let             ( ). Now,      (   )     , (       ) - 

    ( )    ( )    (       )   (1) 

But     
 

 
(
     
     

*      
 

 
(
     
     

* 

         

[
 
 
 
  
 
 
  
 

 (
  
 
 
  
 
*

 (
  
 
 
  
 
*

  
 
 
  
 ]

 
 
 

 

Now, note    (       )     <

  

 
 
  

 

  

 
 
  

 

  

 
 
  

 

  

 
 
  

 

= 

    (       )     .
 

 
  

 

 
 /   (2) 

Thus, from (1), (2):        .
 

 
  

 

 
 /  

 

  
   0

  

 
  

  

 
 1 

 

,                      -     (     )     

 

or    ,(    )  (    ) -              (  ) 

 

5.28 If     ( )     ( )     ( )  

         
        

        then: 

                     



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

138 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

Solution: 

Let  ( )          ( )         
  √ 

 
. Now the own values for   is 

       from McCoy theorem        2
  √ 

 
 
  √ 

 
3       

  √ 

 
   

     

                        .
  √ 

 
/
 

   (1) 

Let          the own values for    from McCoy theorem  *        +  

2
  √ 

 
 
  √ 

 
3 

      
  √ 

 
          

                    .
  √ 

 
/
 

  (2) 

Let             the own values for    

*           +  8
  √ 

 
 
  √ 

 
9       

  √ 

 
   

                                     .
  √ 

 
/
 

   (3) 

From (1) (2) (3)                                        

 4
  √ 

 
5

 

 4
  √ 

 
5

 

 4
  √ 

 
5

 

    √     

 

5.29 If           ( )            (    )    then: 

    (      (  )        (  ))   

     (
 

         
       

 

         
      * 

Solution:  

We use two properties: 
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(1)      (   )               (obvious) 

(2)      ( )       (     )     invertible (from Sylvester) 

rank (      (  )        (  ))      (    (  )       

    (  ))   

      (   (  )     
           (  ))

     (   (  )              (  ))   

     (   (  )                  (  ))   

     (                                ) 

      (         )  (3) 

Now,      .
 

         
       

 

         
      / 

     (
 

                
     

 

                
    *   

     (         )  (4) 

From (3)   (4)   relation from hypothesis. 

 

5.30 If       ( )    (   )    then: 

   (             )     (  ) 

Solution:  

If    ( )    or    ( )   , then    (   ( )      ( ) )    

   ( )    ( ) 

Suppose    ( )       ( )   . Let   (
    
    

*    (
    
    

* 

Let      ( )       ( ). Now,      (   )     , (       ) - 

    ( )    ( )    (       )   (1) 

But     
 

 
(
     
     

*      
 

 
(
     
     

* 
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[
 
 
 
  
 
 
  
 

 (
  
 
 
  
 
*

 (
  
 
 
  
 
*

  
 
 
  
 ]

 
 
 

 

Now, note    (       )     <

  

 
 
  

 

  

 
 
  

 

  

 
 
  

 

  

 
 
  

 

= 

    (       )     .
 

 
  

 

 
 /  (2) 

Thus, from (1), (2):  

       (
 

 
  

 

 
 *  

 

  
   [

  

 
  

  

 
 ] 

[      are       matrices]     (     )     

or    ,(    )  (    ) -              (  ) 

 

5.31     ( )          (    )  
       (     ) 

Find:        

Solution:  

Let     ( ) be an invertible matrix with 

        (     ), for some   (    )         (H) 

Find     ( )  

Step 1. If   (    ) then all the complex roots of the polynomial 

 ( )              

belong to the unit circle. 

Indeed,  ( )    is equivalent to    
    

   
 thus 

       |
    

   
|
 

   
(    )(      )

      
 

and consequently 
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(      ) 6            
    

      
 7

⏟                  
        

   

Thus,       

Step 2          

Consider   as a complex matrix. If     is an eigenvalue of   then according 

to ( )   satisfies 

   
 

  
  (  

 

 
* 

Equivalently  ( )   , hence       according to Step 1. But      is the 

product of all the eigenvalues of  , (each one is repeated according to its 

multiplicity), so         . 

 

5.32 Solve for real numbers: 

|

                   
                               
                                      
                   

|    

 

Solution:  

After simplification we have: 

|(

                   
                                     
                                      
                   

,|   

 
 

 
(      )(           ) (             (      )      

 ). Solve for  :  

 
 

 
(      )(            ) (                   )(    

  )    
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Multiply both sides by a constant to simplify the equation.  

Multiply both sides by   : 

(      )(            ) (                   )(      )    

Find the roots of each term in the product separately. Split into three 

equations:  

         or (            )    or  

                   (      )    

Isolate terms with   to the left hand side. Add   to both sides:        or 

(            )    or                    (      )   . 

After solving each equation separately and some calculations we have the 

following solutions 

   (
   

 
*              

 

 
       

 

 
        

  

 
 

              
 

√ 
               

 

√ 
                

 

5.33 If         ( )     ( 
   )     (    )     then: 

               √   

Solution:  

If        or        or        obvious.  

Let                     . 

Lemma 1: (  )         (1) 

Lemma 2: (  )  (    )       (2) 

From (    )    ( )  ((  ) )     
( )

 

(     )        
             

}  (     )       

 
                     

                 
3            *    +   (3) 
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Similarly:           *    +   (4) 

From (3) (4)                  √   

 

5.34 If         ( )                           

then: 

   (                         )    

Solution:  

We use:    (   ̅)         ( )  (1) 

Because             and       we can make algebraic calculus: 

   0(   (   )  (   ) )(   (     (   ) ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅1      (2) 

(From (1)) 

But    [(   (   )  (   ) )(   (   )  (   ) )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]   

    ,(   (   )  (   ) )(   (   )  (   ) )-   

    (                         )  (3) 

From (2) (3)    (                         )    

 

5.35       ( )   ((  )
 )    (    )        . Find: 

    ,(     ) - 

Solution:  

If   and   are two     matrices, then:   (  )    (  ) 

  (   )    ( )    ( ). We are given:   ((  ) )    (    )   

   *         +      * (     ) +     

   *  (     )+      (1) 

   ((  ) )    (    )    (    )    (    )   

   *         +      * (     ) +     

   *  (     )+      (2) 
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Now,   *(     ) +    *  (     )    (     )+   

   (  (     ))    (  (     ))        [from (1), (2)] 

Let        , then   ( )    (  )    (  )   . 

 Also,   (  )    [Prove above] 

Let   .
  
   

/ ,   ( )   - 

   ( 
     
      

* 

  (  )     (     )            

    .
  
  

/    (  )          

5.36 If     ( ) then: 

     (       )     (        )     (       )  

   (       )  is divisible with   . 

Solution:  

Let   .
  
  

/     .
  
  

/     .
   
   

/            

        .
     
     

/       (say) 

         .
     

     
/       (say) 

        .
   
   

/       (say) 

        .
        
        

/      (say) 

    (  )     (  )     (  )     (  ) 

 (    )(    )        (    )(    )        

 (    )(    )  (    )(    )                 

    (           )        

             (           ) 

   (     ) which is divisible by   . 
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5.37 GENERALIZATION FOR A DAN RADU SECLEMAN’S INEQUALITY 

If       ( )                 

              
         then: 

   (    
      )    

Solution:  

               
                      

                           (1) 

                  
                           (2) 

From (1) (2) we must show: 

   (    
              )     

   ,(    
  )(    

  )-       (    
  )     (    

  )      (3) 

But    (     )     (  
       )   

    ,(      )(      )-     [(     
 )(      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]      (4) 

Similarly:    (    
  )      (5) 

From (4) (5)    (    
  ) (    

  )     (3) its true. 

 

5.38 If       ( )               then: 

   (           )     (
 

    
 

 

    
*   

    (   ) (   (  )  
 

   (  )
* 

Solution:  

First we prove this: Theorem (by Vasile Pop and Ovidiu Furdui) 

If       ( ) and       then: 

   (     )                  ,   (   )           - 

Demonstration: we use a determinant formula: 
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If       ( )      then: 

   (    )       (   (   )           )  (    )   

For our theorem if      then its trivial. 

If        (     )     0 .  
 

 
 /1   

      .  
 

 
 /

   ,     (   (   )           )-
 

 
     

  

  
 

        (   (   )           )            (done) 

Now for our problem: 

Let                

   (           )  (    )       (    )        

    (  ) (   (   )           )    (1) 

 

Let   
 

    
   

 

    
  

   .
 

    
 

 

    
/  

 

    
 

 

    
 

 

   (  )
(   (   )           )   (2) 

From (1)   (2)   

   (           )     (
 

    
 

 

    
*   

 

     (    )  (    )         (  )    (   )   

 (    )            (    )  
 

    
 

 

    
 
   (   )

     
 

 

    

 
 

    
  

 

    (  )     (   )  
   (   )

     
    (   ) (   (  )  

 

   (  )
* 
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5.39 

   |

                           

                           

                           

|        

Prove that:      . 

Solution:  

  |

                         

                         

                         

| 

           , we get 

  |

   
                         

                         
| 

Using                  , we get 

  |

   
                               (           )

          (           )                      
|   

 (                )(                )

      (           )  

                 (           )                   

      (                       ) 

                                        (           )  

                                         

 (           )                               

                                  

Also,                              
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5.40 If         ( )                           

then: 

   (                         )    

Solution:  

We make a generalization: 

Lemma 1: Let    , -  ( )                   . Then 

       ( ) the following statement is true: 

    ,(         )(         )-          being the roots of   

Demonstration:                      and using    (   ̅)     

      ( )     ,(         )(         )-

    ,(         )(         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)-    

Lemma 2. If                   then the conclusion of this theorem 

can be written this way: 

    ,    (     )   (     )  (     )  -    

Demonstration:     ,(         )(         )-   

    ,       ( 
    )  (     )(     )  (  

    
 )  -   

    ,    (     )   (     )  (     )  -    

(we used                   and Viéte relations) 

Now, in our case:         . Done. 

 

5.41 If       ( )                   (     )    

then find: 

     (           ) 

Solution:  
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If          ( )         (     )   , find    (           ). 

As  

   ( )        exists. Let       . 

Now,    (     )       (1) 

    0   . 
 

 
      /1       (   )   .  

 

 
 /      (2) 

    (  
 

 
 *    

,    (   )     ( )   - 

Characteristic equation of   is 

     ( )     ( )      (3) 

In view of (2), 
 

 
 satisfies (3)   

 

  
 
 

 
  ( )     ( )    

    ( )  
 

  
 and   ( )    

As    ( )   , we get    (    )       ( )    and    ( )  
 

 
  

    ( )    and    ( )  
 

 
     exists. Let       . From (1): 

   ,(    ) -       (    )   ( )       (    )      (4) 

Characteristic equation of   is    (  ( ))     ( )      (5) 

In view of (4)     satisfies (4) 

       ( )(  )     ( )       ( )       ( )    

  characteristic equation (5) becomes        .  

Now,             (               )   (      

   )    

 (    )                 

   (           )  (  )    (  )       ( )    ( )     

 

5.42 Find       ( ) such that: 

          (   )       (   )       (    )    
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Solution:  

We will use the following formula: 

   (    )          , when:            (   )        

We will note  ( )     (    ). Because   is a polygon of second degree, 

it’s obvious that it can be at most two changes in the value of     ( ( )). But: 

 (  )     ( )     .
 

 
/     ( )      changes of sign. That means 

there are no matrices with the properties in the hypothesis. 

Observation: 

   (    )      (  
 

 
 *    (

 

 
*     (

 

 
*    

 

5.43     ( )    ( 
        )     (    )    

 

Find:        

Solution:  

    ( ) then characteristics polynomial has highest degree   

  We have to find a polynomial with their eigen values 

    (         )       then polynomial is 

          

It has two different eigen values (    ) and (    ) 

[by solving quadratic equation]. 

Here         

  one eigen value of   is       characteristic polynomial is  

 (   )(       )                           

        then    ( )   product of eigen value     
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5.44 Solve for real numbers: 

|

|

 

   

 

   

 

   
 

   

 

   

 

   
 

      

 

      

 

      

|

|

   

Solution:  

We notice that it is determinant of Cauchy type: 

   |
|

 

     

 

     

 

     
 

     

 

     

 

     
 

     

 

     

 

     

|
|
 with {

    
    
       

 and {
    
    
    

 

   
  

     
 ∏

(     )(     )

(     )(     )

 

   

 

   
  

      
 
(      )(   )

(      )(   )
 
(      )(   )

(      )(   )

   ||

 

   

 

   
 

   

 

   

||  
   

(   )(   )(   )(   )

}
  
 

  
 

  

    
(   )(      )   (      )

 (      )(      )(      )  (   )(   )(   )(   )
       or 

       or        

 

5.45     ( )     * +    ( 
           )   . Find: 

       

Solution:  

             (     )
       ,  (    )  -,  (    )  - 

     (            )     *(  (    )  )(  (    )  )+ 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

152 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

    (  (   )   )    (  (   )   )     (  (   ) )    

or    (  (   ) )   . Assume    (  (   ) )   . 

  (   )  is eigenvalue of   another eigenvalue is  (   )  

    ( )  (   )(   )       

5.46 

      √      √                       (   ) 

Prove that (   )  (   ) as abelian groups. 

Solution:  

We first show that (   ), where      √      √     

is an abelian group. Clearly,              

  is associative suppose        . Let                      

 
 

 
       

 

 
 

    (    )√            √        
         

        
 

(   )    
         

        
√            √  (

         

        
*
 

 

But   .
         

        
/
 

 
(       )(       )                      

          
 

(          ) 

          
 

Thus, (   )    
        

⨁  

            
 
    (          )

            
  

 
                           

            
 

Similarly,   (   )  
                           

            
 

Thus, (   )      (   )          

  is commutative is obvious. 
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Identity Element          √      √            

Inverse Element.For each          is inverse of  .Indeed   (  )    

 (   ) is an abelian group. Next, we show that if   (   ), and  

                      , then (   ) is an abelian group. 

Note     (   )(   )    

  is commutative and its identity element is  . 

  is associative 

Let        ,  

(   )    ((   )(   )   )   

 ((   )(   )     )(   )   

 (   )(   )(   )    

Similarly,   (   )  (   )(   )(   )    

 (   )      (   )          

Finally, if    , then    , and     
 

   
 is inverse of  . Indeed, 

    (   )(   )    (   ) .
 

   
/           identity 

element. 

We now show that       defined by  ( )         
    

is the required isomorphism of   onto   

As      
            ( )         

For       

 (   )       
  . √      √    /      (1) 

and  ( )   ( )       
         

        (2) 

      
              

But                       . √      √    /   (3) 

  from (1), (2), (3):  (   )   ( )   ( ) 
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Thus,   is a homomorphism from (   ) to (   ) 

  is one – to – one  

Let       and  ( )   ( ) 

      
           

                          

   is one – to – one  

  is onto  

Let               

Let       (   )   
      

As          such that           or take        . 

Then  ( )       
                   

   is onto. 

Hence, (   )  (   ) as abelian groups. 

5.47 Let   be a ring with identity. For each     we define 

   *        + 

Show that if      and        then the function          

defined by 

  ( )         is injective but not surjective. 

Solution:  

To show injective, suppose   ( )    ( ), then: 

                               . 

To show it is not surjective, we argue by contradiction. So, we suppose it is 

surjective, there is      such that:             therefore      

since       , we can choose          such that:      

multiplying   on the right on both sides we have:           

which is a contradiction. Hence the mapping is injective but not surjective. 
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5.48 Find the last 3 digits of: 

      
                   ⏟                  

                 

Solution:  

                 ⏟              
          

    

                                    

                                    

We can use Euler’s quotient function and Euler’s theorem: 

Since           . We evaluate  (        ) 

Evaluating  (     );   ( )   ;       (     ) 

                    (     ) 

Since all other terms are multiples of  . 

So,       (     );Evaluating  (       ) 

 (   )           

                

                   (       ) 

Since all other terms are multiples of    , so       (       ) 

         (   )              

 (   )                  

              (       ) 

So,                and               

         mod    ;       mod     

So,               ; The last three digits are    . 

5.49     
th Fibonacci Number.Prove that: 

      ∑
(   ) 

(   ) (  ) 
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Solution:  

Let  ( )  ∑ .   
  

/ 
   . We call  ( ) the main sum. 

Let  ( )  ∑ .
   
    

/ 
   , where   is called auxiliary sum. 

We use the well-known Pascal’s identity .
 
 
/  .

   
 
/  .

   
   

/   (*) 

Let us find the recurrence between   and  ! 

Let     

 ( )  
( )
∑0.     

  
/  .

     
    

/1

 

   

 ∑.
     
  

/

 

   

 ∑.
     
    

/

 

   

 

 ∑ .     
  

/ 
    ∑ .     

    
/ 

     (   )  ∑ .     
    

/   
    

.
    
    

/   (**) 

By (**)   ( )   (   )   (   )      (***) 

On the other side:     

 ( )  ∑ |    
    

|

 

   

 
( )
∑|     

    
|

 

   

 ∑|     
    

|

 

   

 ∑ |     
    

|

   

   

 |
    
    

|   

 ∑(
  (   )

 (   )
*

 

   

       

  (   )    ∑ |
   
  
|   

     ( )  .
  
  
/  ∑ |

   
  
|   

     ( )  

 (   )   ( ) (****) 

By (***)  (   )   ( )   (   )         (*****) 
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By (*****)  ( )   (   )   ( )      (******) 

By (****)  ( )   (   )   ( ) 

By (*****) and (******)  (   )   ( )    ( ( )   (   )   )  

 ( ) 

 (   )    ( )   (   )   ( ), so, we obtain: 

 (   )    ( )   (   )                       

   
  √ 

 
     

  √ 

 
 

 ( )    .
  √ 

 
/
 

   .
  √ 

 
/
 

  (VII) 

Obviously,  ( )    and  ( )    

We have:         and   .
  √ 

 
/    .

  √ 

 
/    

        

  4
  √ 

 
5  (    ) 4

  √ 

 
5    

  4
  √ 

 
 
  √ 

 
5  

  √ 

 
   

  √    
  √ 

 
 

  √  
  √ 

 
    

  √ 

 √ 
 

       ; so,    
 √    √ 

 √ 
 

   
√   

 √ 
  

  √ 

 √ 
 

Now,  ( )    .
  √ 

 
/
 

   .
  √ 

 
/
 

 

 
  √ 

 √ 
4
  √ 

 
5

 

 (  )  
  √ 

 √ 
4
  √ 

 
5
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 ( )  
 

√ 
:4
  √ 

 
5  4

  √ 

 
5

 

;

 

 
  √ 

 
:(4

  √ 

 
5

 

+

 

; 

 ( )  
 

√ 
(4
  √ 

 
5

    

 4
  √ 

 
5

    

+ 

By Binet’s formula   ( )        

Moreover, by (******):  ( )   (   )   ( )    

 ( )    (   )           

 ( )                

 ( )          

Therefore,  

 ( )  ∑ .    
    

/ 
            and  

 ( )  ∑.
   
  

/

 

   

       

5.50  

     (   )(       )(       )(       )(       ) 

    . Find:               

Solution:  

Buscamos ias 9 raices de      

    .
  

 
/      .

  

 
/, para                 

Para encontrar factores con coeficientes reaies, multiplicamos ios pares 

conjugados 

(     (
  

 
*      (

  

 
** (     ( 

  

 
*      ( 

  

 
**   

 (     (
  

 
**
 

 (    (
  

 
**
 

        (
  

 
*     

Entonces 
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     (   ) .       .
 

 
/   / (       (

  

 
*   *   

 (       (
  

 
*   * (       (

  

 
*   * 

  .     .
 

 
//
 

 (     (
  

 
**
 

 (     (
  

 
**
 

 (     (
  

 
**
 

 

    (    (   )      (    )      (    )      (   )) 

Sabemos que si: 

i)        , se cumple: 

          4
        

 
5

 

  4
        

 
5

 

 

ii)           (      )      (      )  
 

 
 

iii)           (      )      (      )  
 

 
      

Entonces como 

        (      )     (      )   , se cumple i) 

Reemplazando ii) y iii) en i) 

          (      )      (      )   (
 

 
 
     

 
*
 

  (
 

 
*
 

 

Si       

    (   )      (    )      (    )  
 

  
     (   )  

  

  
 

Finalmente 

    [    (   )  
 

  
     (   )  

  

  
] 

    [
 

  
 
 

  
 
 

 
 
  

  
] 
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5.51 Let {
       

          
                         

 

Find:          

Solution:  

Using the formulas:       
          

      (   )      

(   ) 
, 

      
          

 
           (         )  (   )          

(   ) 
 

We denote                  
                    

                     
                   

       
        

      ∑      
   

   

    
    ∑       

   

   

(         ) 

    
     

    ∑
         

  

   

   

  

       
    [ ∑  (

 

 
*
    

   

  ∑  (
 

 
*
    

   

 ∑ .
 

 
/
 

   

   

] 

         
        

    [ ∑   (
 

 
*
     

   

  ∑  (
 

 
*
     

   

 ∑ .
 

 
/
 

    

   

] 

∑ .
 

 
/
 

    

   

   .
 

 
/   .

 

 
/
    

 
.
 
 
/
    

  

 
   

 
           

     (   )
 

∑  (
 

 
*
     

   

 
 

 
  (

 

 
*
 

        (
 

 
*
    

 
    .

 
 
/
    

     .
 
 
/
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∑   (
 

 
*
     

   

 

 
    .

 
 
/
    

 (                 ) .
 
 
/
    

      .
 
 
/
    

 
 
 

 
 
 

 (
    

     
 
       

     
 
       

     
 
 

 
*  ( 

 

 
*   

 
                              

     
 ( 

 

 
*  

              

     
 

            

      6
             

     
 
          

     

 
           

     (   )
7   

                                     
           

   
  

      (        )       
           

   
  

                  
                  

        
 

  
                                           

        
 

5.52  

        (   ) ∏(        )

 

   

      

Find: 
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  ∑  
 

 

   

           ̅̅ ̅̅ ̅ 

Solution:  

             (  )     (  ) 

  
  .     .

 

    
//
 

       .
 

    
/

       (
  

    
*      (

  

    
* 

  
  (     (

  

    
**
 

       (
  

    
*

       (
  

    
*      (

   

    
* 

  
  (     (

  

    
**
 

       (
  

    
*

       (
   

    
*      (

   

    
* 

    
  4     4

(    ) 

    
55

 

       4
(    ) 

    
5   

       4
 (    ) 

    
5      4

 (    ) 

    
5 

  
  4     4

(    ) 

    
55

 

       4
(    ) 

    
5   

       4
 (    ) 

    
5      4

 (    ) 

    
5 

  
      <

    .
   
    

/    .
   
    

/

    .
  

    
/

=   <
    .

   
    

/    .
   
    

/

    .
  

    
/

= 

  
      6

   .
   

    
/

    .
  

    
/
7   6

   .
   

    
/

    .
  

    
/
7    

      (  )  (  );  
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5.53 If                                  then: 

  
 

(           )
  

  
 

(           )
  

  
 

(           )
  

 

    
 

 

Solution:  

From Cauchy’s inequality 

 (
  

           
*
 

 (
  

           
*
 

 (
  
 

           
*
 

  

 
 

 
4

  
           

 
  

           
 

  

           
5

 

 

Then we must show this: (
  

           
 

  

           
 

  

           
*
 

 
 

    
   

 
  

           
 

  

           
 

  

           
 

 

    
   (1) 

But from Cauchy’s inequality we have 
  

           
 

  

           
 

  

           
  

 
  
 

               
 

  
 

               
 

  
 

               
  

 
(        )

 

  (              )      (              )
  

 

 
(        )

 

(              )(       )
 

(        )
 

(              )     
    (2) 

 

From (1) (2) we must show: 
(        )

 

(              )    
 

 

    
  

 (        )
 
  (              )  (  

    
    

 )
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5.54                           . Prove that: 

     

                 
 

     

                 
 

 

    
   

       .  
 

 
/ 

Solution:  

∑
     

                 
   

 
         

 

 
(           ) 

    (                 )      (                 )
  

 
 

                 
 

 

   (   
        )    
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MISCELLANEOUS INEQUALITIES 

6.1 Let         and        . Prove that: 

        (
 

   
*          .

 

   
/          .

 

   
/  

 

 
 

Solution:  

Given inequality can be written as: 

(
 

∑ 
*     (

 

   
*  (

 

∑ 
*      .

 

   
/  (

 

∑ 
*      .

 

   
/  
( )  

 
 

Let 
 

∑ 
    

 

∑ 
    

 

∑ 
   . Then           . Now, 

     ( )   
(    )

(   ) .
    

(   ) 
/

 
 

         ( )       .
 

   
/       

is concave,    by Jensen,  

LHS of (1)     ( )     ( )     ( )  
( )

 (           )   

      (

        
∑ 

∑  
∑ 

  
,       4

∑  

∑    
5   .∑  /  .∑ /

 

   ∑     

   
 

∑    
   

 

   
 
 

 
 

∑  

∑    
 
( )  

 
 

(2),(3)  LHS of (1)       .
 

 
/  

 

 
  RHS of (1) 

 

6.2 Let          and            (    ). Prove: 

   
 

 
   

 

 
     

 
               

Solution:  

  
 
       (   ) 
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                     (   ) 

 ( )              (   )   ( )    
 

 
      (   ) 

  ( )      
 

 
          

   ( )   
 

  
       (   )     * ( )      +   ( )    

  ( )   ( )                    (   )   

  
 
       (   )      

 
     

 
            

 

6.3 If       then: 

(    )√   (    )√   (    )(    ) 

Solution:  

       
 
             

 
   

 
        

 .      
 
 / .      

 
 /   

 
  
 
           

 (    )(    )  √  (    )  √  (    )        

 

6.4 If               then: 

  
  
 

   
  
 

   
  
 

    

Solution:  

for    , we get    
 
   

   

       . Hence for         and 

     , we have: 
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        (   )      

      
 
   

 

  (   )
 
   

  
√   

 
   

 
   

  

      
√   

 
   

 
   

 

   

  . 
       

 
    

 
/      

 √ 
.   

 
    

 
    

 
/

 

     
   

   
   

   
   

    

 

6.5   (   )     
     

                  
 . Find       ( ) 

such that:                    . 

Solution:  

  (   )     , where          . Let   (   )     , where         

if       if           and                

Let   (   )     , where       if          if     

         (     )            

Note that       and    ( )        and  

   ( )   (  )(  ) (       )    

 

6.6 If         then: 

   (  )      ∑(
 

 
 
 

 
 
 

 
   

 

 
*

 

   

    (  ) 

Solution:  

For                     
 

 
    (1) 
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Fig. 1 

For       ( )      ( )    ( )  ∫
 

 

 

 
   

 

 
 
 

 
   

 

   
 [see 

Fig. 1] 
 

 
 
 

 
   

 

   
 
 

 
    (2) 

 ∑ (     ) 
    ∑ .

 

 
 
 

 
   

 

 
/ 

      [using (1), (2)] 

   (  )  (   )  ∑ .
 

 
 
 

 
   

 

 
/ 

       (3) 

 

Fig. 2 
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For         ∫
 

 

 

 
   

 

 
 
 

 
   

 

 
   [see Fig. 2] 

   (  )  ∑     
    ∑ .

 

 
   

 

 
/ 

      (4) 

From (3), (4) the inequality follows. 

6.7 If 
√ 

 
         then: 

√   
 

      :√
        

 
;  √

        

 
      (√   

 
) 

Solution:  

Let  ( )  
      

 
       

  ( )  .
 

    
       /

 

  
       

  (    )       

(    )  
  

      . Let  ( )    (    )              

  ( )    (    )
 

    
                      for 

       ( ) is strictly decreasing on ,   -. 

  ( )   ( )    (   )    (    )             (   ) 

Thus,   ( )    for        ( ) is strictly decreasing on (   - 

Now, 
√ 

 
         

        

 
 (   )

 

   

√   
 

 [
 

 
(        )]

 
 
  

  ((   )
 
 *   :√

        

 
;  

     (   )
 
 

(   )
 
 

 

     4√
        

 
5

√        
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 √   
 

     :√
        

 
;  √

        

 
     ( √   

 
) 

6.8 Let     (    )        and     .Prove: 

(  )  
     

  
 

 

    
 

Solution:  

Put                     
 

 
 

  (  )  (  )   (        )   (        )    

  

  
 (  )(        )    (     )    (        )     (     ) 

   (     )(        )     ,(        )    - 

As                          

  

  
   if     

 

 
 

   if   
 

 
 

   if 
 

 
   

 

 
   is least when   

 

 
 

Thus,    .
 

 
/  

 

   
     

     

  
 

 

6.9 If                           then: 

(   )(          )  (       )  

Solution:  

(   )(          )  
( )

(       )  

(1)   (   )  (   )(∑  ) 
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    .∑ /
 

   .∑ / 

 (   ) .∑  /  .∑ /
 

   .∑ /      (   )  
( )

  

 ∑   
(∑  ) 

 
 &           

  LHS of (2)  .
   

 
  / (∑  )    (∑ ) 

     (   )  
 

 
.∑ /

 

   .∑ /      (   ) 

 
( )

   .∑ /
 

   .∑ /   *    (   )+  
( )

 
  

       & LHS of (3) is a quadratic in (∑  ) &  ∑    (as 

       ),   it suffices to prove that the discriminant is    that is, it 

suffices to prove: 

         *    (   )+         *    (   )+     

   (   )    (   )    (   )(     )    

           it suffices to prove:             
( )

    

But LHS of (4)  (   ) (                   ) 

 
 
    (   )     true   (4) is true (proved) 

 

6.10 If     .  
 

 
/ then: 

(         )(         )(         )

(         )(         )(         )
   

Solution:  

Let                            .  
 

 
/          
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So, to prove 
.  

 

 
/.  

 

 
/.  

 

 
/

.  
 

 
/.  

 

 
/.  

 

 
/
   or 

 .  
 

 
/ .  

 

 
/ .  

 

 
/  .  

 

 
/ .  

 

 
/ .  

 

 
/ 

     
  

 
 
  

 
 
  

 
 
 

  
 
 

  
 
 

   
         

 

 
   

 

 
 
 

 
 
 

   
  

 
  

 
 
  

 
 
  

 
 
 

  
 
 

  
 
 

  
 (     )  (

 

 
 
 

 
 
 

 
*   

 4
                       

   
5  4

                       

   
5 

or (                       )  (               

        )    (1)      we know that 

                  

Taking               , we get 

                                 (2) 

Taking             

                      (3) 

Adding (2) & (3), we get (1)  (2) (3)  (1) 

So, (1) (∑     ∑  )  (∑     ∑  ) 

This is true 

and hence 
.  

 

 
/.  

 

 
/.  

 

 
/

.  
 

 
/.  

 

 
/.  

 

 
/
   or 

(         )(         )(         )

(         )(         )(         )
     

6.11 

 (   )  ∑
    (       )          

  (   )(     )(     )

 

   

       

Prove that: 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

173 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

 (   )   (   )  
 

 √  
 

 

Solution:  

 (   )  ∑
    (       )          

  (   )(     )(     )

 

 

  

 ∑(
   

    (   )(     )
 

     

  (     )(     )
*

 

   

 
   

(   )(   )
  

  (   )   (   )  
 

     
 

 

     
 

 

 √ 
  

 

 √ 
 

 

 (   )   (   )  
 

 √  
 

 

6.12 If     then: 

.  
 
  (   )

 
/ (

 

    
 

 

      
*  . (   )

 
  (   )

 
/ (

 

      
 

 

      
* 

Solution:  

Let  ( )    
 
  (   )

 
      

  ( )  
( )
  .(   ) (   )

 
    

 
/ 

Now, (   ) (   )    (   )(              ) 

  (   )
 
 
( )

  
 
 

Also,     
(  )

  &       (i).(ii)  (   ) (   )
 
    

 
    

   ( )    (by (1))   ( )     
 
  (   )

 
  (   )

 
  (   )

 
  

   
 
  (   )

 
 
( )

 (   )
 
  (   )

 
 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

174 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

Now, let  ( )  
 

    
 

 

      
      

  ( )  
    (    )    (      ) 

(      ) (    ) 
 
  (   )   (    ) 

(    ) (   ) 
 (    ) 

 
  (       )   (          )

(    ) (   ) 
 
 (   )(     )

(    ) (   ) 
   

(                 (    ))   ( )   

 
 

    
 

 

      
 

 

      
 

 

      
  

 
 

    
 

 

      
 
( )  

      
 

 

      
 

(a).(b)   given inequality is true (proved) 

6.13    ( )   
 

 
  ∑

   

(   )(   )(   )
 
       . If   (   )     

then:      ( ( ))
 ( )

 ( ( ))
 ( )

    ( )   ( ) 

Solution: 

 ( )       ∑
   

(   )(   )(   )

 

   

     

 ( ( ))
 ( )

 ( ( ))
 ( )

  ( ) ( )              

 

(   )(   )(   )
 

 

   
 

 

(   )(   )

 
 

   
(

 

 (   )
 

 

 (   )
* 

 
 

 
(

 

(   )(   )
 

 

(   )(   )
* 

   ∑
 

(   )(   )(   )

 

   

 
 

 
   
   

∑(
 

(   )(   )
 

 

(   )(   )
*
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(
 

 
 

 

(   )(   )
*  

 

 
 

 

(   )(   )(   )
 

 

(   )(   )
 

 

(   )(   )(   )
 

   ∑
 

(   )(   )(   )

 

   

 ∑
 

(   )(   )

 

   

    

    
   

∑(
 

   
 

 

   
*

 

   

       
   

(
 

 
 

 

   
*  

 

 
 
 

 
 

 ( )       ∑
   

(   )(   )(   )

 

   

     (       )   

     (
 

 
 
 

 
 *    

( ( ))
 ( )

 ( ( ))
 ( )

  ( ) ( )    

                        

Let  ( )                       

  ( )       ( )               ( )   (      )      

     (   ) 

For      ( )   ( )                         

 

6.14 Let       be positive real numbers such that:           .  

Find the minimum of value: 

  
 

√  √ 
 

 

√  √ 
 

 

√  √ 
 

Solution:  

Let         such that           . Find       ∑
 

√  √ 
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By Cauchy-Schwarz we have:   ∑
  

 √   √ 
 

(     ) 

∑ √  ∑ √ 
 

(     ) 

 √(     )(        )
 

Let         then       and          
    

 
. We will 

prove that: 

  

 √  
    

 

 
 

 
    

 (     )

 
  (          )    

 (   ) (    )     (true) 

So,   
 

 
      

 

 
        . 

 

6.15 If       then: 

      

       
 

            

                   
 

            

                   
   

Solution:  

      

         
 
      

       
  

            

              (       )
 
            

             
 

            

              (       )
 
            

             
 

We take the function  ( )  
  

   
, this function is convex, 

    ( )  
  

(   ) 
   then by Jensen’s inequality, we have 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

177 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

 (     )   (          )   (          )

 

  4
                           

 
5 

or  (     )   (          )   (          )     .
 

 
/ 

(since                               ) 

 .
 

 
/  

  
 

 

  
 

 

  , we have: 

 (     )   (           )   (           )    

 

6.16 If         then: 

        

   
 
        

   
 
        

   
    

Solution:  

  (   )     ( )  
        

   
    ( )  

(    )(    )

(   ) 
 

   ( ( ))   (
 

 
*     ( )    

 ( )   ( )   ( )           

6.17 If           * +         then: 

  (    )(    )    (    )(    ) 

Solution:  

  (    )(    )    (    )(    )   (1) 

(1)  
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denote  ( )  
    

 
 

we prove that   increasing function 

  ( )  
             

 
 
  (      )   

  
      

then we have  >

    

 
 
    

 
   ( )

    

 
 
    

 
   ( )

  ( )   ( )   ( )   ( ) 

 

6.18 If       .  
 

 
/ then: 

 (         )   (         )   (         )

 (         )   (         )   (         )
   

 

Solution:  

                                   

                    

                   

                                    

 (         )   (         )   (         )    

 (         )   (         )   (                   )    

 (         )   (         )   (         )   (         )    

(   )(         )  (   )(         )    

(   )(         )  (   )(         ) 

If         true. If         true. 

If               and              
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 (   )(         )  (   )(         ) 

         

   
 
         

   
|  (  ) 

         

   
 
         

   
     ( )       

T. Lagrange ,   - ,   -   ( )        

                          

( )   (   ) ( )   (   )                         

true. 

6.19 For                    . Prove: 

 √ 
 

  √ 
 

 √ 
 
  √ 

 
 
    

    
 

Solution:  

 √ 
 

  √ 
 

 √ 
 
  √ 

 
 
    

    
  

 

   
( √ 

 
  √ 

 )  
 

   
( √ 

 
  √ 

 ) 

 ∫ √ 
  

 
   ∫ √ 

  

 
         .

 

 
/
   

  , which is true 

        

 

6.20 If   .  
 

 
/          then: 

∏√           
 

 

   

    
 
 
 
 
 
   

 
 
 
   
  

Solution:  
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For    . Let   ( )  (   
        )

 

      
 

 
 

    ( )  
 

 
  (           ) 

 

  ( )
  
 ( )  

 

 
 
 ,                       -

           
  

   
 ( )  

(        )(               )

           
  ( ) 

  
 ( )    for     

 

 
 

   for   
 

 
 

   for 
 

 
   

 

 
 

   ( ) attains its minimum value at   
 

 
   ( )  4

 

 
 
 

5

 

 

 

 
 

 
 
 

   

 ∏   ( )
 
        where    

 

 
 
 

 
   

 

 
 
   

 
   

 

 
 
 

 
 

  
 

 
 
   

 
 

Thus ∏ (           )
 

  
       

 

 
   

 

 
 
   

  

6.21 If         then: 

 

    
  
 

 

    
  
 

 

    
  
 

 

    
  
 

 

    
  
 

 

    
  
  4

 

 
 
√ 

 
5 

Solution:  

 

    
  
 

 

    
  
  √

 

    
        

 
 

√ 
 

 

    
  
 

 

    
  
 

 

√ 
 
 

 
 

 

√ 
 

(because 
 

√ 
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  √     ); 
 

    
  
 

 

    
  
 
 

 
 

 

√ 
 

 

    
  
 

 

    
  
 
 

 
 

 

√ 
  

∑(
 

    
  
 

 

    
  
*   (

 

 
 
 

√ 
* 

 

6.22 If             then: 

(    )(    )    (    ) (    )  (    )    (    )   √
           

   √     
   

Solution:  

Consider  ( )    (   )   . Clearly    ( )   
 

(   ) 
 so   is 

concave. Thus the function 

  
( ( )  ( ))

(   )
 is decreasing on (   ). Thus, for   (   ) and     we 

have: 
 .
 

 
/

 

 

 
 ( )

 
. 

Consequently  .
 

 
/  

 ( )

 
  . Applying this to   

 

 
 and adding we 

get: 

  ∑ (
 

  
*

 

   

 
 

 
∑ (

 

 
*

 

   

 ∑   (  
 

  
*

 

   

 
 

 
∑
 

 

 

   

 
 

 
∑  

   

 

 

   

 
 

 
∑
 

 

 

   

 

 
   

 
   

∏ (    ) 
   

      
   :

 
 
 

      
∏(    )

 

   

; 

So, we have proved that for integers       the next inequality holds: 

∏ (    ) 
    

    

   
 
 

     (1) 

Applying (1) with       and       and using the AM-GM 

inequality we get 
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∏(    )

 

   

 ∏(    )

 

   

  √∏(    )

 

   

 ∏(    )

 

   

  √
    

   
 
 

 
    

   
 
 

 

Which is equivalent to the proposed inequality. 

 

6.23 If                   – fixed then: 

∑(      ) (  
 

(     )   
*  

 (   )(   )(     )

 (     )    
 

Solution:  

                    (   ) √            
   

 

       (   )     (1) 

  
 

(     )   
         

 

(     )   
 

(   ) √
       

(     )   

   
   

 

(     )   
 

   

(     )
  (2) 

From (1) and (2) ineqality becomes: 

 ∑(      ) .  
 

(     )   
/  (   )(   )∑

 

     
.  

We must show this: ∑
 

     
 

 (     )

 (     )   
   (3). From Cauchy’s 

inequality  ∑
 

     
 ∑

  

 (     )
 ∑(        )  (    

 )   

 ∑
 

     
 

(     ) 

 (        ) (     ) 
   (4) 
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From (3) (4) we must show: 
(     ) 

 (        ) (     ) 
 

 (     )

 (     )   
  

 
(     )

 (        )  (     ) 
 

 

 (     )    
  

  (     )    (     )

  (        )    (     )   

 (     )   (        )                     

(true) 

6.24 If         then: 

 

            
 

 

            
 

 

            
   

 

Solution:  

∑
 

            
   

 ∑
    

          
   

 ∑
(    ) 

                  
   

  

 
(∑        )

 

 ∑            
   

 

6.25 If                 then: 

                      

 
                   

Solution:  

                 ∑       

   (     )

 ⏞
      

∑            

   (     )

 

  (     )     ∑       

   (     )

  ∑        

   (     )
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: ∑       

   (     )

  ;  ∑        

   (     )

∑      

   (     )

 

6.26 If   .  
 

 
/ then: 

|
 

         
 
(         )(      )

      
|  √  

Solution:  

Let   |
 

         
 
(         )(      )

      
| 

  |
 

         
 
(         )(         )

    
(         )

    

| 

  |
  (         ) 

(         )
|     |

         

         
| 

  |
       

         
|    |

(         ) 

         
|               

  √ |   .  
 

 
/|  √  

6.27 If         then: 

 

√   
 

 

√   
 

 

√   
 

 √ 

√ (     )

  √ 4
 

√      
 

 

√      
 

 

√      
5 

 

Solution:  

  (   )  (   )  ( )    
 
    ( )   

 

 
  
 
     ( )  
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∑ ( )   (

     

 
*  ⏞
          

 
∑ (

   

 
* 

 

                  

 

 

 
∑ (   )   (

        

 
*  ⏞
          

 
∑ (

      

 
* 

 
 

 
∑

 

√   
 

 

√ (     )
 

 
 

 
∑

 

√      
 

 

 

∑
 

√   
 

 √ 

√ (     )
  √ ∑

 

√      
 

 

 

6.28 If                                   then: 

(               )    (           ) 

Solution:  

                , we can consider         

       

                                     

                                 , 

where                  by these substitutions, given inequality 

transforms into: 

(                      ) 

    (               )   

   (   )(             )

   (     )(           )   
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   (       )(         )   

                           

                                           

            

                                        

            true                    (proved) 

6.29 If       then : 

 
     

     
 
 

    

 
Solution:  

 
  ,   -     ( )       ( )             

 

  ,   -     ( )         ( )  
 

 
 

 
     

   
 
 

 
 ( )   ( )

 ( )   ( )
 ⏞

        ( )

  ( )
 
      

 
 

              

 
        

 

6.30 If               
 

 
  then: 

∑    (      )   √               

Solution:  

       
 

 
     

 

 
      (   )     .

 

 
  /   
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(         )(      )  (      )(          )

                 

                                            

 ∑     (      )                .  

Using AM-GM: 
              

 
 √                      

          √              

∑    (      )   √             

 

6.31                ( )  ∫
   (       )

    

 

 
  . Prove that: 

 

  
.  ( )    ( )    ( )/  ∑(             ) 

Solution:  

Let  ( )  
  (       )

    
 is a continuous function in     ( )  

∫
 

       

 

 
   

       
 

 
                 

 

    
  

               
}   

  ( )  ∫
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  ∫
 

          

 

 

    ∫
 

(   )      

 

 

  

 
 

   
∫

 

   4√
   
   5

 

 

 

    

 
 

   
 

 

√   
   

      
 

√   
   

||

 

 

 
 

√    
  

 ( )   ∫
 

√    
             

     ( )       
9   ( )            we 

must show: 

∑(       )  ∑               , which its true because 

∑   ∑   

 

6.32 If                 then: 

 √ (    )(    )(    )  (  
 

√  
*(  

 

√  
*(  

 

√  
* 

Solution:  

 

√     ⏞
     

 

√ 
(  √  )  ∏√     

 

 √ 
∏(  √  )   

 

 √ ∏√     
 

√      
 ∏(  √  )  (       )   

 

 √ (    )(    )(    )  ∏(  
 

√  
* 
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6.33 If         then: 

(     )√   (     )

(   )(   )(   )
 
 √ 

 
 

Solution:  

                            √   (     ) 
 

  ⏞
           √  

 
 
  

   
 
 √ 

 
 
  

   
 
 √ 

 

 
(     )√   (     )

(   )(   )(   )
 
 √ 

 
 

 

6.34 If                 then: 

          (              )    
Solution:  

 

        ( )        ( )                       
 

By Popoviciu’s inequality: 
 

 

 
∑ ( )   (

     

 
*  

 

 
∑ (

   

 
*   

 

 
 

 
∑      

 

 
∑ 

   
  ∑    ∑       

6.35 If                       then: 

 (
 

 
*
 

  .
 

 
/
 

  .
 

 
/
 

  .
 

 
/
 

  (
 

 
*
 

  .
 

 
/
 

   

Solution:  

Because                  such that:   
  

     
   

  

     
   

  

     
. Inequality becomes: 
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 .
 

 
/
 

 
 

     
 .
 

 
/
 

 
 

     
 .
 

 
/
 

 
 

     
 .
 

 
/
 

 

 

     
 .
 

 
/
 

 
 

     
 .
 

 
/
 

          (1) 

Let   (    )     ( )       ( )           ( )  

 (   )        ( )   , we use Jensen’s generalization: 

   (  )     (  )     (  )   (              ) with 

                     . Let    
 

     
    

 

     
    

 

     
    

 

 
  

   
 

 
    

 

 
 

 

     
.
 

 
/
 

 
 

     
.
 

 
/
 

 
 

     
.
 

 
/
 

 

.
     

     
/
 

         (2) 

Let    
 

     
    

 

     
    

 

     
    

 

 
    

 

 
    

 

 
  

 
 

     
.
 

 
/
 

 
 

     
.
 

 
/
 

 
 
 

    
 .
 

 
/
 

 .
     

     
/
 

         (3) 

From (2) (3)   (1) its true. 

6.36 If     .  
 

 
/ then: 

(           )   
         (           )   

        

(    )    
   (    )    

   (    )    
   (    )    

  
   

 

Solution:  

Let                                 

Then, given inequality  
(   )   (   )   

        
 
( )
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Now, √    
   

 
              

   
 

 
 
 

 

 
   

 
      

( )
(   )   

    
. 

Similarly,     
( )

(   )   

    
 

(a).(b)          
(   )    (   )   

        
 

(   )   (   )   

 (   
        ) (           )

 

(   )   (   )   

 
 

(   )   (   )   

        
    (1) is true (Proved) 

 

6.37 If                     (    )(    )     

then:          

Solution:  

Let         .We have: 

         
 

    

         
 

   

}  
 

   
   

 

    
        

 

 
 

(    )(    )        
  

(    )(    )
  

   
   

   
    

 

 
   

  √ 

  
 (1) 

We need to prove:           
 

    
. In fact: 

 

   
 

 

    
 

     

(   )(    )
    (true) 

   
 

   
 

 

    
    .  

 

 
1 and   

 

 
 

 

   
 
 

 
 
  √ 

  
   (true)  
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6.38 If     
 

 
 then: 

   
∑    .   .

 

  
// 

      

Solution:  

For     
 

 
      .

 

  
/        . Let 

      .
 

 
/    .

 

  
/    .

 

  
/ 

Note              is a strictly decreasing sequence. Also 

     .
 

  
/    

   0    .
 

  
/    .

 

  
/1    .

 

    
/    .

 

 
/   

     0    .
 

    
/    .

 

    
/1    .

 

 
/ 

           
   ( )

     .
 
  /

 

   
   

      
   

    

 
 

 
  

   .
 
  /

 
    

 
( )  

    

 
 

As      is strictly increasing and          
    

 
 

   
    

 
        (1) 

[
    

 
   (  )⁄ ] 

Also, for     
 

 
 

 

  
.
    

 
/  

          

  
 
    

  
(      )    

    

 
 is strictly 

decreasing on .  
 

 
1   

 
    

 
 
 
 

 

 
 

 
  for     

 

 
  (2) 
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From (1), (2):    
 

 
     . Now, 

∑   .   
 

  
/

 

   

          (
 

 
*  ∏ 

∑       .
 

  
/ 

   

 ∏    .
 
 
/    

6.39 For              . Prove: 

∏
           

       

 

   

 
(    ) 

  (  ) 
 

Solution:  

We know           for all     

∫   

 

 

 ∫     

 

 

   
           

       
 
    

  
 

 ∏4
           

       
5

 

   

 ∏(
    

  
*

 

   

 
        (    )

     
 

 
           (    )

     (          )
 
(    ) 

  (  ) 
  (proved) 

 

6.40 In acute      the following relationship holds: 

 

 
(                    )  √   

Solution:  
 

WLOG:        
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∑       ⏞
         

 
∑ ∑      

 

 
∑       

 

 
 

 
∑       

 

 
∑      ⏞

      
 

 
      (

     

 
*

     
 

 
  

 
  

 

6.41 If       (   -       then: 

 

 
   (     )  (     )      (       )      

Solution:  

If       (   -       then 
 

 
   (     )  (     )      

(       )         (1) 

Case 1.    .
 

 
/    

We have 

 (1)  (       )  (         )        
 

 
   (     )   

 (       )     (
 

 
*        

 

 
   (     ) 

We have    .
 

 
/    and           so 

 (       )     .
 

 
/    

 (       )     (
 

 
*              

On the other hand, we have 
 

 
   (     )  

 

 
   (  )       . So,  

(       )     .
 

 
/        

 

 
   (     )   (1) true 

Case 2.    .
 

 
/    



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

195 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

We have (1) 

  (     )  (         )        
 

 
   (     )   

 (     )     (
 

 
*        

 

 
   (     ) 

We have    .
 

 
/    and         so,  

(     )     (
 

 
*    (     )     (

 

 
*              

On the other hand, we have 
 

 
   (     )  

 

 
   (  )        

So (     )     .
 

 
/        

 

 
   (     )   (1) true 

Therefore, we have QED. 

 

6.42 If     then ∑ ( (  )  ) 
    

 

 
 where   denote the Riemann 

function. 

Solution:  

For     prove that ∑ ( (  )   )    
 

 
 where   is the Riemann 

zeta function. 

Clearly the function   ∑ ( (  )   )    is decreasing on ,   ) so 

 

∑( (  )   )

   

 ∑( (  )   )

   

 ∑:∑
 

   
   

;

   

 ∑(∑
 

   
   

+

   

 ∑
 

    
   

 
 

 
∑(

    

 (   )
 
    

(   ) 
*
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6.43 If                     ̅̅ ̅̅ ̅ then: 

∑4(       )
    (     

 

  
*
   

5

 

   

 
      

     
 

Solution:  

          
(   )   

  
              (demonstration by 

induction) 

 (        )
    .      

 

  
/
   

 
(               

 

  
*
   

  
   (1) 

But               
 

 
 
 

 
   (2) ,     , because function 

  (    )   , 

 ( )                
 

 
   ( )     ( )         , but 

 ( )  
 

 
   

 

 
 

From (1) (2) (        )
    .      

 

  
/
   

 
.
 

 
/
   

  
  

(        )
    .      

 

  
/
   

 
    

     
   (3) 

From (3)  ∑ [(        )
    .      

 

  
/
   

] 
    

     

     
 

 

6.44 For     ,    )              . Prove: 

∑        
   

∑        
   

 
   

   
 

Solution:  

If     
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∑      
 

   

 (   )   

and  

∑      
 

   

 (   )   
∑        
   

∑        
   

 
   

   
     

   

   
 

,          - 

If      

∑      
 

   

 

  4.
 
 
/
   

  5

 
   

 
         

   
 

and 

∑    
 

   

   
         

   
 

   
∑        
   

∑        
   

 
         

         
 
(   )  

(   )  
 

[By Cauchy’s Mean Value Theorem] for some  ycling between   and  . 

   
   

   
     

   

   
 as         or        . 

6.45 If               then: 

     

√   
 

(
 
  

 
  

 
 *
 
√   
 .

 
  

 
  

 
 /

     
 

Solution:  

For all              , we let                       

       . Consider 
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(     )

√   
 

.
 

 
 
 

 
 
 

 
/
 

√   
 .

 

 
 
 

 
 
 

 
/

(     )
. 

 Iff 
(     )(     )

√   
 

√   
  .

 

 
 
 

 
 
 

 
/ .

 

 
 
 

 
 
 

 
/. 

4√
  

  

 
 √

  

  

 
 √

  

  

 
54√

  

  

 
 √

  

  

 
 √

  

  

 
5  .

 

 
 
 

 
 
 

 
/ .

 

 
 
 

 
 
 

 
/. 

Iff .
  

  
 
  

  
 
  

  
/ .

  

  
 
  

  
 
  

  
/  .

  

  
 
  

  
 
  

  
/ .

  

  
 
  

  
 
  

  
/ and 

it is to be true because 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 and 

  

  
 
  

  
 
  

  
 

  

  
 
  

  
 
  

  
. Therefore it is to be true. 

 

6.46 In      the following relationship holds: 

((   )(   )(   ))
 
 

      
   

Solution:  
 

{
           
           
           

 ∏     ∏(   )            ∏(   )   

 

        √(   )(   )(   )  
((   )(   )(   ))

 
 

      
   

 

6.47 If       .  
 

 
/ then: 

∏  (       )  ∏  (       )  ∏   (
 

     
* 
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Solution:  

For     
 

 
   (       )   (       )   

 8
  (       )    (       )

 
9

 

 {
 

 
  (          )}

 

  

 (  (
 

     
**
 

 

Now,         
 

 
 ∏   (       )∏   (       )   

 ∏  (       ) (       )  ∏[  (
 

     
*]
 

 

 

6.48 If                   
   

 
    √   then : 

(
     

√ 
*
 

           

Solution:  

The power means inequality gives us: 

√
     

 

 

       (
     

 
*
 

            

  (
     

 
*
 

           (
     

√ 
*
 

           

 

6.49 If         |
                    
                    

                    
|  then: 
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Solution:  

  ⃗⃗ ⃗⃗  ⃗                             ⃗  

  ⃗⃗ ⃗⃗  ⃗                             ⃗  

  ⃗⃗⃗⃗  ⃗                             ⃗  

|  ⃗⃗ ⃗⃗  ⃗|
 
 |  ⃗⃗ ⃗⃗  ⃗|

 
 |  ⃗⃗⃗⃗  ⃗|

 
                              

      (           )           

|  ⃗⃗ ⃗⃗  ⃗|  |  ⃗⃗ ⃗⃗  ⃗|  |  ⃗⃗⃗⃗  ⃗|    

    |  ⃗⃗ ⃗⃗  ⃗  (  ⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)|  ⏞
        

|  ⃗⃗ ⃗⃗  ⃗|  |  ⃗⃗ ⃗⃗  ⃗|  |  ⃗⃗⃗⃗  ⃗|    

 

6.50 If       then: 

 
 
  (

   

 √  
*

 

(√  √ )
 

  
 
  

Solution:  

Suppose      , then   √   
   

 
   

Let  ( )        0√   
   

 
1 

By the first mean value theorem, there exists   .√   
   

 
/ such that 

  .
   
 /    √  

   
  √  

 
 

 
 

 

(√  √ )
   (

   

 √  
*  

 

 
 

 .
   

 √  
/

 

(√  √ )
 
  

 

    (1) 

But   √     
   

 
   

 

 
 
 

 
 
 

 
   (2) 

From (1), (2), we get 
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  (

   

 √  
*

 

(√  √ )
 

  
 
  

6.51 If    , - with distinct roots                 
  then: 

   ( )

 ( )
 4

  ( )

 ( )
5

 

 ∑
   (  )

  (  )

 

   

      *          + 

Solution:  

Let  ( )   (    )(    ) (    ) 
 

  ( )   (    )(    ) (    )
  (    )(    ) (    ) 

    (    )(    ) (      ) 
 

   ( )  <

 (    )(    ) (    )

  (    )(    ) (    )

    (    ) (      )
=

 <

 (    )(    ) (    )

  (    )(    ) (    )

    (    ) (      )
= 

   <

 (    ) (      )

  (    ) (      )

    (    ) (      )
= 

 
   (  )

  (  )
 

 

     
 

 

     
   

 

     
 

 
Similarly, 

   (  )

  (  )
  ∑

 

     

 

   
   

 ∑
   (  )

  (  )

 

   

   

Also, 
   ( )

 ( )
 .

  ( )

 ( )
/
 

 
 

  
0
  ( )

 ( )
1  

 

  
0
 

  
(  ( ( )))1  

  

   
,      

                   - 
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[
 

    
 

 

    
   

 

    
]

  [
 

(    ) 
 

 

(    ) 
   

 

(    ) 
]    

 

Hence, 
   ( )

 ( )
 .

  ( )

 ( )
/
 

 ∑
   (  )

  (  )
 
    

 

6.52 If                     then: 

.√      
 

 √      
 

/ .√      
 

 √      
 

/ .√      
 

 √      
 

/    

Solution:  

√         
 

 √         
 

 .√ 
  

 √ 
  

/

 

 
.√     
  

 

√     
  

/

 

 
.√ 
  

 √ 
  

/

 

 
, (Holder) 

√       
 

 √       
 

 √ (   )
 

 √       
 

 √       
 

 

(√       
 

 √       
 

)(√       
 

 √       
 

)(√       
 

 

√       
 

)  √ (   ) (   ) (   )
 

, 

.√       
 

 √       
 

/ .√       
 

 √       
 

/ .√       
 

 √       
 

/   √(   )(   )(   )
 

 

 √(   )(   )(   )
 

  
           

 
   

 

 

   (     ) 

.√       
 

 √       
 

/ .√       
 

 √       
 

/.√       
 

 √       
 

/     

 

6.53 If           then: 
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 (   )(   )              

Solution:  

(         )  (   )  (   )    

              (       )    

  (                 )                     

   

  (           )   (       )   (   )(   )   

   

         
 

 
 (   )(   )              

 

6.54 If       
 

 
  then: 

    

    
   (   ) 

Solution:  

  ,   -     ( )     (    ) 

 ( )   ( )  ⏞
        

  ( )(   )   (   )    (    )    (    )

 
 

        
(   ) 

  (
    

    
*  

 (   )

     
  (   )    (

    

    
*      (   )   

 
    

    
   (   ) 
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6.55 Prove that: 

                      

Solution:  

>

 ( )         

 ( )         

 ( )         

 >

  ( )  (    )   

  ( )  (    )   

  ( )  (    )   

 >

 ( )   ( )   

 ( )   ( )   

 ( )   ( )   

  

 ( )   ( )   ( )                              

                      

6.56 If             ( )       then: 

   (    ( 
    )(     )   (   )(   )       )    

Solution:  

We first show that if       ( ) and      , then 

    (     )   . 

Note that       (    )(    )  ,      - 

    (     )     ((    )(    ))     (    )   (    ) 

    (    )   (    ̅̅ ̅̅ ̅̅ ̅̅ )     (    )   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      (    )     

Now, for             ( )      , we have 

    ( 
    )(     )   (   )(   )         

    ,(   )
  (   ) -(     )   (   )(   )

 ,(   )  (   ) -(   ) 

    (   )
 (         )   (   )(   )

 (   ) (         ) 

    (   )
 (   )   (   )(   )  (   ) (   )  
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 ,   (   )(   )-
  ((   )(   ))

 
       

where      (   )(   )    ( ) and 

   (   )(   )    ( ) 

Thus, 

    *    ( 
    )(     )   (   )(   )       +   

    (     )    

6.57 For                  ,   -     . Prove: 

∏ 
 

 
 

 

   

 
(  ) 

∏  
 

 
  

   

       

Solution:  

                
  ∏  

 

   

       ∏ 
 

 
 

 

   

     

(   ∏ 
 

 
 

 

   

+(   ∏ 
 

 
 

 

   

+   

 (  )  (     )∏ 
 

 
 

 

   

 (∏ 
 

 
 

 

   

+

 

    

(∏ 
 

 
 

 

   

+

 

 (  )  (     )∏ 
 

 
 

 

   

 ∏ 
 

 
 

 

   

 
(  ) 

∏  
 

 
  

   

       

 

6.58   ( )     
       

              , -     

If              then:  .  
 

 
/   ( )  

 

 
  ( ) 
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Solution:  

For         .  
 

 
/
 

   
 

 
 

  (  
 

 
*  ∑  

 

   

(  
 

 
*
 

 ∑  

 

   

(  
 

 
*   ,     - 

 ∑  

 

   

 
 

 
∑   

 

   

  ( )  
 

 
  ( ) 

 

6.59 If         then: 

         (
   

 
*

   
 

(
   

 
*

   
 

(
   

 
*

   
 
 (   )

     
  

USA-TST 

Solution:  

Applying Weighted AM GM; 

√    
   

 
   

 
 √    
   

 
   

 
 and √    

   
 
   

 
 

 ∏   

   

 ∏(
   

 
*
   

   

 ∏  

   

 ∏(
   

 
*

   
 

   

 

Again applying Weighted      ; 

∏(
   

 
*

   
 

   

 

(

 
 
 
 ∑ .

   
 
/   

(   )
 
⁄

(   )
 
⁄
 

(   )
 
⁄

(   )
 
⁄
 

(   )
 
⁄

(   )
 
⁄ )

 
 
 
 

     

 (
     

 
*
     

 (   )
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6.60 If                 is an arithmetical progression 

with common difference   then: 

     
 

      
      

 

      
        

 

        
   √

  
  

 

 

Solution:  
 

 ( )         
   

 
   ( )  

 

    
 
 

  
  

(   ) 

  (    )
  

                        (  )   (  ) 
 

∑     
 

        
 ∑     

       
        

 ∑(           
      ) 

 

            
       √

  
  
         

 

 
       

     
 

 
     

  (  )   (  ) 
 

6.61 For     (    )       . Prove: 

(     )(     )(     )

(   )(     )(       )
        

Solution:  

Consider 

(     )(     )(     )  (   )(     )(       ) 

 (     )(                 )

 (   )(                   ) 

                                            

 ,                                         - 

                                             



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

208 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

     (     )      (     )      (     )      (     ) 

     (     )(     )    (       )(     )    

 (     )(     )(     )  (   )(     )(       ) 

 
(     )(     )(     )

(   )(     )(       )
          

(     ) 

6.62 If           then: 

  

   
        √  

   
  √  

 
 

 
 

Solution:  

Put   
   

       
 √  

   

 
 √  

. We need to prove that     
 

 
 

1) LEMMA: 
   

       
 √   when       and     

We have 
   

       
 √   

       

   
 

 

√  
  

  .
 

 
/

 

 
  
 √

 

 
   (1) 

Put 
 

 
   (       ) , we have (1)  

   

   
 

 

√ 
   (2) 

Put  ( )      
   

√ 
 

  ( )  
 (√   )

 

 √  
    ( ) is decreasing function   ( )   ( ) 

when     and  

 ( )   ( ) when      ( )    when     and  ( )    when 

   . 

1.1.)  If    . We have (2)      
   

√ 
   (True) 
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1.2) If    . We have (2)      
   

√ 
   (True) 

  (1) true  
       

   
 

 

√  
 

Applying the lemma  
   

       
 √    (since   

       

   
 

 

√  
) 

On the other hand, by AM-GM inequality, we have 
   

 
 √     

(since    ) 

2) We need to prove that   
 

 
  

 
 (   )

       
  √   

   

 
 √   

 (   )

       
 
   

 
  √   

 
 .
 

 
  /

  .
 

 
/
 

 

 
  

 
  √

 

 
   (3) 

Put 
 

 
   (       ), we have (3)  

 (   )

   
 
   

 
  √   (4) 

Put  ( )  
   

 
  √  

 (   )

   
 

  ( )  
 

√ 
 
 

 
 
 (   )        

      

 
 √               (   )        

       
 

Put  ( )   √               (   )         

  ( )  
    (  √    (√   )     )

√ 
 

  ( )          (5) or   √    (√   )          (6) 

(5):           

(6):   √    (√   )            
 (√   )

√   
 

Put  ( )      
 (√   )

√   
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  ( )  
(√   )

 

 (√   )
     ( ) is increasing function  ( )    has at 

most 1 root 

On the other hand, we have  ( )        is the root of (6) 

So   ( )        

So we have 

2.1)   ( )    when     

So when      ( ) is decreasing function 

  ( )          ( )   ( )    

2.2)   ( )    when     

So when      ( ) is an increasing function   ( )  

        ( ) 

So,  ( )         

  (4) true   (3)    
 

 
  Q.E.D  

                                                                           

 ( ) 
 
 
  
                               

 
  
 
                                

  
 
 

                               

                   

  

6.63 If         then: 

        (
   

(   )      
*    (

   

(   )      
*

   (
   

(   )      
*    

Solution: 
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 ( )      (       ) is convex because    ( )         

       

    ( )(   )   ( )        is the tangent line at (   ( )) 

so we have:     (       )      
         

     
   

(   )      
   

(1) 

Likewise we have      
   

(   )      
  (2) and      

   

(   )      
  (3) 

 
( ) ( ) ( )

             
(   )

(   )      
 

(   )

(   )      
 

(   )

(   )      
 
    

 

(   )  (   )  (   )  ∑  (
   

(   )      
*

   

  

      ∑   .
   

(   )      
/       (proved) 

equality holds when        . 

6.64 If                 then: 

        
          

          
  

  

   
 

Solution:  

Inequality   (                          )  
  

   
  

 

        
 

 

        
 

 

        
 

 

   

 
 

             
 

 

             
  

 
 

             
 

 

   
  

   

         
 

   

         
 

   

         
 

 

   
   (1) 
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Let                           

(1)  
 

     
 

 

     
 

 

     
 

 

   
   (2) 

Inequality (2) is a generalization of Nesbitt inequality (to prove let 

          

         and          and use   
 

 
        

 

6.65 For      . Prove: 
  
 
   

 

   
 (   )(    ). 

Solution:  

Let  ( )      
 
 for all     

  ( )     
 
      

 
    ( )      

 
     

 
      

 
   for all 

   .Hence   is convex   applying Hermite – Hadamard Inequality. 

 ( )   ( )

 
 

 

   
∫ ( )

 

 

    (
   

 
*   

 
 

   
∫    

 

 

 

    (
   

 
* .

   
 
/
 

 

 
  

 
   

 

   
 (   ) 4  (

   

 
*
 

5         

 
  
 
   

 

   
 (   )(    )  (proved) 

6.66 For        . Prove: 

∑        
   

∑        
   

 
 

 
  



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

213 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

Solution:  

Let    . By the Cauchy’s mean value theorem, there exists   (   ) 

such that 

    

    
 
   

   
 
 

 
  

 

 
  (1) 

Case 1      , then 

∑        
   

∑        
   

 
 

 
  

Case 2    . Let      . Put 
 

 
      Now, 

∑        
    

  (    )

   
 and ∑      

      
  (    )

   
 

Thus, 

∑      
     

∑        
   

 
 (    )

    
 
 

 
  

 

 
 

,    - 

6.67 For       (    ). Prove: 

  
                

            
    

Solution:  

From the graphs of      and      , it is clear that: 

              (1) 

Choosing        in (1), we get:   
 
      

  
 

  
 
( )

  

Similarly, 
  
 

  
 
( )

  
  
 

  
 
( )

  
  
 

  
 
( )

  
  
 

  
 
( )

  
  
 

  
 
( )

  

(a)   (b)   (c)   (d)   (e)   (f)  
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6.68 If         then: 

        

√  √  √ 
   

Solution:  

 ( )      √    ( )     
 

√ 
    ( )     

 

  √ 
   

 ( )   ( )   ( )  
      

  (
     

 
*   

     √      √      √    
     
   √

     

 
  

  (
     

 
  *   √

     

 
  :√

     

 
  ;

 

    

    √      √      √    
        

√  √  √ 
   

 

6.69 For       have    ̂  
 

 
, put    ̂       ̂    and     

Prove: 

 
 

(√ )
     

           

Solution: 

 

(√ )
 
 
( )

            
(  )

  

  
 

 
     

 

 
     

 

 
             (1) 



DANIEL SITARU                                                          MARIAN URSĂRESCU 
 

215 OLYMPIAD  PROBLEMS  ALGEBRA-VOLUME 1 

 

     
 

 
        

 

 
                   

       
( )

                
( )

            

(a) (b)                            (ii) is true (*) 

Let   
 

 
           

 

 
     

 

 
   

 

 
 

      
( )
   .

 

 
  /  

         

√ 
     

      
( )
   .

 

 
  /  

         

√ 
(2), (3)  

             
 

(√ )
 
[*(         ) +

 
  *(         ) +

 
 ] 

 
( )  

(√ )
 
6(       )

 
  (  (      ))

 
 7 

From Bernoulli’s inequality, we have, 
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