ROMANIAN MATHEMATICAL MAGAZINE

In the non – obtuse $\triangle ABC$, prove that

$$r_a + r \le \sqrt{7b^2 + 7c^2 - 2bc - 4a^2}$$

Proposed by Dang Ngoc Minh-Vietnam

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco

We have:

$$r_{a} + r = r\left(\frac{s}{s-a} + 1\right) = (b+c) \cdot \frac{r}{s-a} = (b+c) \tan \frac{A}{2} \stackrel{A \leq \frac{\pi}{2}}{\leq} b + c \stackrel{?}{\leq} \sqrt{7b^{2} + 7c^{2} - 2bc - 4a^{2}}$$

$$0 \stackrel{?}{\leq} 4(b^{2} + c^{2} - a^{2}) + 2(b-c)^{2},$$

which is true for non – obtuse $\triangle ABC$.

Equality holds iff ABC is isosceles right triangle at A.