ROMANIAN MATHEMATICAL MAGAZINE

In $\triangle ABC$ the following relationship holds:

$$h_a + h_b + h_c - 9r \le 2(R - 2r)$$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Tapas Das-India

$$h_a + h_b + h_c = \frac{ab + bc + ca}{2R} = \frac{s^2 + r^2 + 4Rr}{2R} \stackrel{Gerretsen}{\leq}$$

$$\leq \frac{4R^2 + 4Rr + 3r^2 + r^2 + 4Rr}{2R} = \frac{4R^2 + 8Rr + 4r^2}{2R}$$

We need to show:

$$h_a + h_b + h_c - 9r \le 2(R - 2r)$$

$$\frac{4R^2 + 8Rr + 4r^2}{2R} - 9r \le 2(R - 2r)$$

$$4R^2 - 10Rr + 4r^2 \le 4R^2 - 8Rr$$

$$2Rr \ge 4r^2 \text{ or } R \ge 2r \text{ (True Euler)}$$

Equality holds for an equilateral triangle