
 
SP.558 In 𝚫𝑨𝑩𝑪,𝑶 − circumcenter. If the bisector from angle 𝑨, altitude from 

angle 𝑩 and 𝑪𝑶 circumcevian are in concurrence, then holds: 
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Proposed by Marian Ursărescu – Romania  

Solution by proposer 

 

From Ceva’s theorem: 

𝑩𝑫

𝑫𝑪
⋅
𝑪𝑬

𝑬𝑨
⋅
𝑨𝑭

𝑭𝑩
= 𝟏          (1) 

From bisector theorem: 

𝑩𝑫

𝑫𝑪
=

𝑨𝑩

𝑨𝑪
=

𝒄

𝒃
              (2) 

𝑬𝑪 = 𝑩𝑪 ⋅ 𝐬𝐢𝐧 𝑪 and 𝑨𝑬 = 𝑨𝑩 ⋅ 𝐜𝐨𝐬 𝑨              (3) 

From Law of Sines in 𝚫𝑭𝑨𝑪: 

𝑨𝑭

𝐬𝐢𝐧(𝑨𝑪𝑭)
=

𝑨𝑪

𝐬𝐢𝐧(𝑨𝑭𝑪)
 

But: 𝐬𝐢𝐧(𝑨𝑪𝑭) = 𝐬𝐢𝐧(
𝝅

𝟐
− 𝑩) = 𝐜𝐨𝐬 𝑩 

𝑨𝑭 =
𝑨𝑪⋅𝐜𝐨𝐬𝑩

𝐬𝐢𝐧(𝑨𝑭𝑪)
         (4) 



 

𝚫𝑭𝑩𝑫 ⇒
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⇒ 𝑭𝑩 =
𝑩𝑪⋅𝐜𝐨𝐬𝑨

𝐬𝐢𝐧(𝝅−𝑨𝑭𝑪)
=

𝑩𝑪⋅𝐜𝐨𝐬𝑨

𝐬𝐢𝐧(𝑨𝑭𝑪)
     (5) 

 

From (1)-(5), it follows: 
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𝑨𝑪
⋅
𝑩𝑪 ⋅ 𝐜𝐨𝐬 𝑪
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⋅
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𝑩𝑪 ⋅ 𝐜𝐨𝐬 𝑨
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⇒
𝐜𝐨𝐬 𝑪 ⋅ 𝐜𝐨𝐬 𝑩

𝐜𝐨𝐬𝟐 𝑨
= 𝟏 ⇒ 𝐜𝐨𝐬𝟐 𝑨 = 𝐜𝐨𝐬 𝑩𝐜𝐨𝐬 𝑪 

𝐜𝐨𝐬𝟑 𝑨 = 𝐜𝐨𝐬 𝑨𝐜𝐨𝐬 𝑩 𝐜𝐨𝐬 𝑪     (6) 

 

But: 𝐜𝐨𝐬 𝑨𝐜𝐨𝐬 𝑩 𝐜𝐨𝐬 𝑪 =
𝒔𝟐−𝟒𝑹𝟐−𝟒𝑹𝒓−𝒓𝟐

𝟒𝑹𝟐
      (7) 

 

From (6) and (7), we get: 

𝐜𝐨𝐬𝟑 𝑨 =
𝒔𝟐−𝟒𝑹𝟐−𝟒𝑹𝒓−𝒓𝟐

𝟒𝑹𝟐
    (8) 

 

But from Gerretsen: 𝒔𝟐 ≤ 𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟑   (9) 

 

From (8) and (9): 
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From Gerretsen: 𝒔𝟐 ≥ 𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐    (10) 

From (8) and (10): 

𝒔𝟐 ≥
−𝟒𝑹𝟐 + 𝟏𝟐𝑹𝒓 − 𝟔𝒓𝟐
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