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FROM  AUTHORS 

In July 2016 was founded “Romanian Mathematical 

Magazine” (RMM) (www.ssmrmh.ro) as an Interactive 

Mathematical Journal.  

Same date was founded “Romanian Mathematical 

Magazine”-Online Mathematical Journal (ISSN-2501-0099) 

and “Romanian Mathematical Magazine”-Paper Variant 

(ISSN-1584-4897). 

 In five years the website of RMM was visited by over 

5,000,000 people from all over the world. With over 12,000 

proposed problems posted, over 18,000 solutions and many 

math articles and math notes RMM is a big chance for young 

mathematicians from whole world to be known as great 

proposers and solvers. This book is a small part of RMM-

Interactive Journal.  

Many thanks to RMM-Team for proposed problems and 

solutions.  
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NUMBER’S THEORY 

1.1 Let ܁ = {,, … ,ૠ}.	Find the minimal  with the property that 
there exist ܖ distinct subsets of ࡿ such that for no two subsets their 
union equals S. 

Gerhard Woeginger-Austrian NMO-2017 

Solution: There are 2ଶଵ subsets of ܵ which do not contains 2017. The union 
of any two such subsets does not contain 2017 and is thus a proper subset of 
ܵ.Thus ݊ ≥ 2ଶଵ .To show the other direction, we group the subsets of ܵ into 
2ଶଵ pairs in such a way thet every subsets forms a pair with its complement. 
If ݊ ≥ 2ଶଵ then the ݊ subsets would contain such a pair. Its union would be 
ܵ, contradiction. Thus ݊ = 2ଶଵ . 
 
1.2  For a positive integer , let (ࢇ,ࢇ, …  be an (ࢇ, +  −tuple of 
integers. For each  = ,, … .   ᇱs in be the number of ܓ܊ let ,,
,ࢇ,ࢇ) … ,࢈,࢈)  ᇱs in be the number of ࢉ and let ,(ࢇ, …  .(࢈,
Find all  (ࢇ,ࢇ, … ࢇ such that (ࢇ, = ࢇ,ࢉ = ,ࢉ … ࢇ, =  .ࢉ

Korean NMO-2017 

Solution: Let ܣ = (ܽ,ܽଵ, … ,ܽ) and ܤ = (ܾ,ܾଵ, … , ܾ) such that ܽ is the 
number of ݇′s in ܤ and ܾ is the number of ݇′s in ܣ. Clearly, they satisfy 
0 ≤ ܽ ,ܾ ≤ ݊ for all ݅ = 0,1, … ,݊ and 

ܽ



ୀ

= ܾ݅



ୀ

= ݊ + 1,				ܾ



ୀ

= ݅ܽ



ୀ

= ݊ + 1. 

Suppose that ܣ has no zeros. Since the sum of all ܽ′s equals ݊ + 1, it implies 
ܣ = (1,1, … ,1) and ܤ = (0,݊ + 1,0, … ,0), which is impossible. Therefore ܣ 
should contain 0, and, similarly, ܤ should contain 0 as well. Hence, ܽ > 0. 
Assume that there are ݇ distinct numbers in ܣ, denote by ݔଵ, ,ଶݔ … , ݔ . Then, 
there are ݇ non-zeros and ݊ + 1 − ݇ zeros in ܤ. Therefore, ܽ = ݊ + 1 − ݇ 
and ܽଵ + ܽଶ + ⋯+ ܽ = ݇. 
Since ݔ′s are distinct, 

݊ + 1 = ܽଵ + ܽଶ +⋯+ ܽ ≥ ଵݔ + ଶݔ +⋯+ ݔ ≥ 

≥ 0 + 1 + ⋯+ (݇ − 2) + (݊ + 1 − ݇) =
(݇ − 2)(݇ − 1)

2
+ (݊ + 1 − ݇) 

This implies ݇ଶ − 5݇ + 2 ≤ 0, that is, ݇ = 1,2,3,4. 
Case 1: ݇ = 1. 
Since ܽ =  .is impossible ܣ So	contains 0 and ݊. ܣ,݊
Case 2: ݇ = 2. 
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This means ܽ = ݊ − 1 > 0,ܽଵ + ܽଶ +⋯+ ܽ = 2 and ܽଵ + 2ܽଶ + ⋯+
݊ܽ = ݊ + 1. Suppose ݊ ≥ ݊,contains 0 ܣ,4 − 1 and 1 (or 2 ). Then there are 
at least three distinct numbers in ܣ, which is impossible. So, we have ݊ = 2,3. 
If ݊ =  .should be all 1, which is impossible ܣ,2
If ݊ = ܣ,3 = ܤ = (2,0,2,0). 
Case 3: ݇ = 3. 
This means ܽ = ݊ − 2 > 0 and ܽଵ + ܽଶ + ⋯+ ܽ = 3 and ܽଵ + 2ܽଶ +⋯+
݊ܽ = ݊ + 1. 
There are  three distinct numbers in ܣ: 0,݊ − 3, and ݐ. 
If ݊ = 3, then ܣ = ܤ = (1,2,1,0). 
If ݊ = 4, then ܣ = ܤ = (2,1,2,0,0). 
If ݊ = 5, then ܣ = (3,1,1,1,0,0) and ܤ = (2,3,0,1,0,0). 
If ݊ = 6, then ܣ is impossible. 
If ݊ ≥ 7 and ݐ = 1, then ܣ = (݊ − 2,1,0,1, 0ି, 1,0,0,0) and ܤ =
(݊ − 3,3,0,0, 0ି, 0,1,0,0). 
If ݊ ≥ 7 and ݐ = 3, then ܣ is impossible. 
Case 4: ݇ = 4. 
This means ܽ = ݊ − 3 > 0 and ܽଵ + ܽଶ + ⋯+ ܽ = 4 and ܽଵ + 2ܽଶ +⋯+
݊ܽ = ݊ + 1. There are four distinct numbers in ܣ: 0,݊ − 3,  under ݑ and ݐ
ݐ <  .ݑ
If ݊ = 4, then ܣ is impossible. 
If ݊ = 5, then ܣ = (2,3,0,1,0,0) and ܤ = (3,1,1,1,0,0). 
If ݊ = 6, then ܣ = ܤ = (3,2,1,0,0,0). 
If ݊ ≥ 7 and (ݑ,ݐ) = (1,3), then ܣ = (݊ − 3,3,0,0, 0ି, 0,1,0,0) and 
ܤ = (݊ − 2,1,0,1, 0ି , 1,0,0,0). 
If ݊ ≥ 7 and (ݑ,ݐ) = (1,2), then ܣ = ܤ = (݊ − 3,2,1,0, 0ି, 1,0,0,0). 
Therefore, we have the answer: 
(2,0,2,0),(1,2,1,0),(3,1,1,1,0,0),(2,3,0,1,0,0),(3,2,1,1,0,0,0), 
(݊ − 2,1,0,1, 0ି, 1,0,0,0) for ݊ ≥ 7, (݊ − 3,3,0,0, 0ି, 0,1,0,0) for 
݊ ≥ 7, (݊ − 3,2,1,0, 0ି, 1,0,0,0) for ݊ ≥ 7. 
 
1.3 Suppose that 2017 boxes are arranged in a circle in a room. A set 
of boxes is called “nice” if it contains at least two boxes and from each 
box in the set, the number of boxes to skip in order to reach another 
box in the set in the clockwise order is 0 or odd. Each of 30 students 
enters this room one by one and selects a nice set of boxes and put a 
slip of paper containing his or her name in each of selected boxes. 
Prove that if the set of all boxes containing 30 slips is not nice, then 
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there exists students , and boxes ܊,܉ satisfying the following two 
conditions. 
(i)  selected ܉ but not ܊, and  selected ࢈ but not a. 
(ii) The number of boxes to skip in order to reach ࢈ from ܉ in the 
clockwise order is not odd and none of skipped boxes were selected 
by  or . 

Korean NMO-2017 

Solution: Remark: This problem is true, even if 30 is replaced with ݊ and 2017 
is replaced with any odd positive integer. 
Let ܣ  be the set of boxes selected by the ݅th student. Suppose that there exist 
no students ܤ,ܣ and boxes ܽ, ܾ satisfying (i) and (ii). 
Lemma 1. If both ܣ and ܤ are nice, then either ܣ ∩  is nice or there exists ܤ
boxes ܽ and ܾ such that ܽ ∈ ܽ,ܣ ∉ ,ܣ ܾ ∈ ,ܤ ܾ ∉  and the number of boxes ܤ
to skip in order to reach ܾ from ܽ in the clockwise order or counterclockwise 
order is not odd and none of skipped boxes were selected by ܣ or ܤ. 
Proof lemma 1. Suppose that there does not exist boxes ܽ and ܾ such that 
ܽ ∈ ܽ,ܣ ∉ ,ܤ ܾ ∈ ,ܤ ܾ ∉  ܾ and the number of boxes to skip in order to reach ܤ
from ܽ in the clockwise order or counterclockwise order is not odd and none of 
skipped boxes were selected by ܣ or ܤ. 
If ܣ ∩ ܤ = ∅, then by following the circle we encounter boxes in ܣ or ܤ. The 
circle can be partitioned into intervals so that each interval starts at and ends 
with a box in ܣ or ܤ and no other boxes in the interval are in ܣ or ܤ. Let us say 
that the length of an interval is the number of its boxes minus 1. Then the sum 
of length of all intervals is precisely 2017. If both ends of an interval are in ܣ, 
the length is even or 1. Similarly, if both ends of an interval are in ܤ, the length 
is even or 1. If an interval starts at a box in ܣ plus the number of consecutive 
pairs of boxes. Then this contradicts to the assumption that ܣ is nice. 
So we may assume that ܣ ∩ ܤ ≠ ∅.Suppose that ܣ ∩  is not nice. Then there ܤ
is an interval starting from a box ݔ in ܣ ∩ ݕ and ending at a box ܤ ∈ ܣ ∩  ܤ
such that no internal boxes are in ܣ ∪  and the length of the interval is odd ܤ
and larger than 1. (We allow ݔ = ܣ| in case ,ݕ ∩ |ܤ = 1. Since this interval has 
odd length and ܣ is nice, it contains an odd number of pairs of consecutive 
boxes in ܣ. This interval can be partitioned into subintervals by ܤ and one of 
the subintervals, say ܬ, must contain an odd number of pairs of consecutive 
boxes in ܣ. By the assumption, both ends of ܬ are in ܤ and ܬ has length greater 
than 1 and so it has even length because ܤ is nice. However, ݆ contains an odd 
number of pairs of consecutive boxes in ܣ  and so ܬ has odd length, a 
contradiction. (To see this, we need to consider the case when an end of ܬ is ܣ 



DANIEL SITARU            MARIAN URSĂRESCU              FLORICĂ ANASTASE 
 

10 WORLD’S  MATH  OLYMPIADS 
 

or not. In both cases, we deduce that the first subinterval of ܬ from end to the 
first box in ܣ not ܤ has even length.) 
Lemma 2.  If in ܤ,ܣ, ܣ fail to satify (i) and (ii), then ܥ ∩  fail to satisfy ܥ and ܤ
(i) and (ii). 
Proof Lemma 2. Suppose there exists an interval ܫ of odd length starting from 
a box ܽ in ܣ ∩ ܣ and no internal boxes are in ,ܥ ending at a box ܿ in ,ܤ ∩  or ܤ
 .ܣ contains an odd number of pairs of consecutive boxes in ܫ ,is nice ܣ As .ܥ
Similarly ܫ contains an odd number of pairs of consecutive boxes in ܤ closest to 
ܿ is a pair of consecutive boxes ܾଵܾଶ in ܤ. Then the interval from ܾଶ to ܿ has 
odd length and therefore the interval ܬ from ܽ to ܾଵ has even length. However, 
 contradicting the ,ܣ contains an odd number of pairs of consecutive boxes in ܬ
assumption that ܣ is nine.Now, we are ready to solve this problem. We 
proceed by induction on the number ݊ of students. If ݊ = 2, then it is true by 
Lemma 1. Let us assume that ݊ ≥ 3. If ܣଵ ∩ ଶܣ ∩…∩  ିଵ is not nice, thenܣ
we are done by induction hypothesis. So we may assume that  
ଵܣ ∩ ଶܣ ∩ …∩  ିଵ is nice. By applying Lemma 2 repeatedly we deduce thatܣ
ଵܣ ∩ ଶܣ ∩ …∩ ଵܣ . satisfy (i) and (ii). By lemma 1ܣ ିଵ andܣ ∩ ଶܣ ∩…∩
ିଵܣ ∩  . is nice, contradicting the assumptionܣ
 
1.4	 A  ×  square is divided into  ×  squares. A point lies at a 
vertex of  ×  squares that the vertex belongs. (A point light can be 
positioned on a vertex on the edge of the bug square). Find the 
minimum number of point lights required such that all the squares are 
lit even if one of the point lights is not functioning. 

B.Battsengel-Mongolian NMO-2017 

Solution: The minimum number of light is 55.Each 1 × 1 black square needs 
at least 2 lights and each figure that consist of there 1 × 1 square needs at 
least 3 lights. (See picture 1). So we need at least 2 × 20 + 3 × 5 = 55 lights. 
Figure 2 shows that 55 lights could be placed as required. 
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1.5  For an integer  ≥ , let 
ࢇ = (ା)(ି)


ࢇ, = (ାି)(ିା)

(ି)(ା)
  forିࢇ = ,, …  .,

(a) Show that ࢇ,ࢇ, …  .are all integers ࢇ,
(b) Show that both  −  and  +  are prime numbers if and only 
if ࢇ,ࢇ, … are divisible by ( ࢇ, − ) with exactly one exception 
and are divisible by  +  with exactly one exception. 

Korean NMO-2017 

Solution: (a) We first show that ܽ = ൫ାିଵଶିଵ ൯
(ଶିଵ)(ଶାଵ)

ଶାଵ
. Let us use 

induction on ݇. The case when ݇ = 1,ܽଵ = (ଶିଵ)(ଶାଵ)
ଷ

. We now assume the 

assertion hods when ݇ < ݅.	Then  

ܽ =
(݊ + ݅ − 1)(݊ − ݅ + 1)

2(݅ − 1)(2݅ + 1) ܽିଵ 

=
(݊ + ݅ − 1)(݊ − ݅ + 1)

2(݅ − 1)(2݅ + 1) ൬
݊ + ݅ − 2

2݅ − 3
൰

(2݊ − 1)(2݊ + 1)
2݅ − 1

 

= ൬
݊ + ݅ − 1

2݅ − 1
൰

(2݊ − 1)(2݊ + !)
2݅ + 1

. 

Therefore, by induction on ݇,ܽ = ൫ାିଵଶିଵ ൯
(ଶିଵ)(ଶାଵ)

ଶାଵ
 for all ݇. 

Now, we are ready to prove that ܽ is an integer. Note that ܽ is an integer if 
and only if  ൫ାିଵଶିଵ ൯(2݊ − 1)(2݊ + 1) is a multiple of (2݇ + 1). Thus,  
(2݊ − 1)(2݊ + 1) ≡ 4݊ଶ − 1 ≡ 4(݊ − ݇)(݊ − ݇ − 2݇	݀݉)(1 + 1) implies 
the following: 

൬
݊ + ݇ − 1

2݇ − 1
൰ (2݊ − 1)(2݊ + 1) ≡ ൬

݊ + ݇ − 1
2݇ − 1

൰4(݊ − ݇)(݊ − ݇ − 1) 

≡ ൬
݊ + ݇ − 1

2݇ + 1
൰4(2݇)(2݇ + 1) ≡ 2݇	݀݉)0 + 1). 

Therefore, ܽ is an integer. 
(b) We remark that (2݊ − 1) ∤ ܽିଵ , (2݊ − 1) ∣ ܽ, (2݊ + 1) ∣ ܽିଵ, and 
(2݊ + 1) ∤ ܽ since ܽିଵ = 2(݊ − 1)(2݊ + 1) and ܽ = 2݊ − 1. Therefore, it 
is enough to prove thet both 2݊ − 1 and 2݊ + 1 are prime numbers if and only 
if ܽଵ, … ,ܽିଶ are all multiples of (2݊ − 1)(2݊ + 1). 
Necessary condition. Suppose that 2݊ − 1 is not a prime number. We consider 
the prime number  such that  ∣ 2݊ − 1. 

ܽିଵ
ଶ

(2݊ − 1)(2݊ + 1)
=
ቀ݊ +  − 1

2 − 1ቁ… ቀ݊ −  − 1
2 + 1ቁ

) − 2)! 
. 
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 ∣ ݊ − ିଵ
ଶ

 implies that  does not divide the numerator of the right hand side. 

This implies that ଵ
(ଶିଵ)(ଶାଵ)

ܽషభ
మ

 is not an integer since dominator of the right 

hand side is divided by . This contradicts that ܽషభ
మ

 is a multiple of  (2݊ −

1)(2݊ + 1). Therefore, is a prime number and we skip the proof here. 
Sufficient conditions: For an integer ݇ between 1 and ݊ − 2, we have 

ܽ =
(݊ + ݇ − 1)(݊ + ݇ − 2) … (݊ − ݇ + 1)

(2݇ − 1)! (2݇ + 1)
(2݊ − 1)(2݊ + 1). 

As 2݇ − 1 < 2݊ − 1,2݇ + 1 < 2݊ − 1, and both 2݊ − 1 and 2݊ + 1 are prime 
numbers, we deduce that (2݊ − 1)(2݊ + 1) ∣ ܽ . 
 

1.6 Anna and Berta play a game in which they take turns in removing 
marbles from a table. Anna takes the first turn.When at the beginning 
of turn there are  ≥  marbles on the table , then the player whose 
turn it is removes  marbles, where  ≥  either is an even number 
with  ≤ 


 or an odd number with 


≤  ≤  A player wins the game .

if she removes the last marble from the table. Determine the smallest 
number ࡺ ≥ 	 such that Berta can enforce a victory if there 
are exactly ࡺ marbles on the table in the beginning. 

 Gerhard Woeginger-Austrian NMO-2017 

Solution: We claim that the losing situations are those with exactly 
݊ = 2 − 2 marbles left on the table for all integers ܽ ≥ 2. All other situations 
are winning situations. 
Proof: By induction for ݊ ≥ 1.For ݊ = 1the player wins by taking the single 
remaining marble.For ݊ = 2 the only possible move is to take ݇ = 1 marbles, 
and then the opponent wins in the next move. 
Induction step from ݊ − 1 to ݊ for ݊ ≥ 3; 
1. If ݊ is odd, then the player takes all ݊ marbles and wins. 
2. If ݊ is even but not of the form 2 − 2, then ݊ lies between two other 
numbers of that form, so there eists a unique ܾ with 2 − 2 < ݊ < 2ାଵ − 2. 
Because of ݊ ≥ 3 it holds that ܾ ≥ 2. Therefore all three numbers in this chain 
of inequalities are even, and therefore we can conclude that 2 < ݊ < 2ାଵ −
4. From the induction hypothesis we know that 2 − 2 is a losing situation, and 
by taking 

݇ = ݊ − ൫2 − 2൯ = ݊ −
2ାଵ − 4

2
≤ ݊ −

݊
2

=
݊
2

 

marbles we leave it to the opponent. 
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3. If ݊ is even and of the form ݊ = 2 − 2, then the player cannot leave a 
losing situation with 2 − 2 marbles to the opponent (where ܾ < ܽ holds 
because at least one marble must be removed, and ܾ ≥ 2 holds because after 
a legal move starting from an even ݊, at least one marble remains). 
But because of ܾ ≥ 2 we know that ݇ is even and strictly greater than 

ଶ
 

because  
2 − 2 ≥ 2 − 2ିଵ = 2ିଵ > 2ିଵ − 1 = ଶೌିଶ

ଶ
= 

ଶ
; impossible. 

Solution: Berta can enforce a victory if and only if ܰ is of the form 2 − 2. The 
smallest number ܰ ≥ 100	000 of this form is ܰ = 2ଵ − 2 = 131	070. 
 

1.7	 A necklace contains 2016 pearls, each of which has one of the 
colours black, green or blue. In each step we replace simultaneously 
each pearl with a new pearl, where the colour of the new pearl is 
determined as follows: If the two original neighbours were of the 
same colour, the new pearl has their colour. If the new neighbours 
had two different colours, the new pearl has the third colour. 
a) Is there such a necklace that can be transformed with such steps to 
a necklace of blue pearls if half of the pearls were black and half of the 
pearls were green at the start? 
b) Is there such a necklace that can be transformed with such steps to 
a necklace of blue pearls if thousand of the pearls were black at the 
start and the rest green? 
c) Is it possible to transform a necklace that contains exactly two 
adjacent black pearls and 2014 blue pearls a necklace than contains 
one green pearl and 2015 blue pearls? 

Theresia Eisenkolbl-Austrian NMO-2017 

Solution: a) Since 2016 is a divisible by 4, we can alternatingly take two black 

and two green pearls. 

b) In the assign to each blue pearl the number 0, to each green pearl the 
number 1 and to each black pearl the number 2, then it holds in each step that 
the new colour of a pearl modulo 3 is equal to the negative sum of its two 
original neighbours. The new total sum of all colours modulo 3 therefore can 
be calculated by multiplying the odd total sum of all colours with 2 and 
changing the sign. But modulo 3, a multiplication with -2 is equivalent to a 
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multiplication with 1, therefore the total sum always remains the same modulo 
3. 
For a necklace with only blue pearls the total sum is 0. But for 1000 black and 
1016 green peals it is 2000+1016≡1(mod3). Therefore, there does not exist an 
arrangement of 1000 black and 1016 green pearls that can be transformed 
into a necklace with only blue pearls using such steps. 
c) Using the same assignment of numbers modulo 3, in each step the sum of all 
colours in even positions becomes the sum of the colours in odd positions, and 
vice versa. If these sums are ܣ and ܤ in the beginning, then at the end we still 
have these same two sums modulo 3, maybe with switched positions. 
But in the beginning, we have sums 2 and 2 modulo 3, because both among 
the even and among the odd positions there is exactly one black pearl with 
value 2, and otherwise only blue pearls with value 0. However, at the end we 
are supposed to have sums 1 and 0 because one of the two sums is determined 
only by blue pearls with value 0, and the other by exactly one green pearl with 
value 1 and only blue pearls with value o otherwise. Therefore, is not possible.  
 
1.8 For a positive integer  ≥ , let () be the smallest positive real 
constant such thet there is a sequence of ܖ real numbers ࢞, ,࢞ … ,  ,࢞
not all zero, satisfying the following conditions: 
(i) ࢞ + ࢞ + ⋯+ ࢞ =  
(ii) for each  = ,, … ࢞ it holds that ,, ≤   ା or࢞
࢞ ≤ ା࢞ +  .( the indices are taken modulo) ା࢞()
Prove that: 
(a) (ࢇ) ≥  for all ; 
(b) () =  if and only if  is even. 

Dusan Djukic-Serbian TST-2017 

Solution: The sequence cannot two adjacent non-positive terms. Indeed, if 
ܽିଵ > 0 ≥ ܽ ,ܽାଵ, then  ܽିଵ > ܽ}	ݔܽ݉ ,ܽ ,ܽ +  ାଵ}, contradictingܽ(݊)ܥ
(ii). Hence, the sequence consists of blocks os positive terms followed by a 
single non-positive term. Consider an arbitrary block of positive terms 
ܽ ,ܽାଵ, … ,ܽାିଵ. We call the term ܽ	݈݅݊݅ܽ݅ݐ and ܽାିଵ݂݈݅݊ܽ. Let ܲ be the 
sum of all initial terms in the sequence, ܭ be the sum of the final ones, ܰ be 
the sum of all non-positive terms, and ܵ be the sum of positive terms which are 
not initial or final. Summing the inequalities ܽାିଵ ≤ ܽା +  ାାଵ overܽ(݊)ܥ
all blocks yields ܭ ≤ ܰ + ܰ Since .ܲ(݊)ܥ = ܭ− − ܵ − ܲ, this relation 
becomes: 2ܭ ≤ (݊)ܥ) − 1)ܲ − ܵ; 		(∗) 
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Suppose now that ܥ(݊) ≤ 2. Summing the inequalities ܽାଶ ≤ ܽାଶାଵ +
ܽାଶାଶ for 0 ≤ ݅ ≤ ቄିଷ

ଶ
ቅ and adding the inequality ܽାିଶ ≤ 2ܽାିଵ if 2 ∣ ݈, 

we obtain  ܽ ≤ ܽାଵ + ܽାଶ + ⋯+ ܽାିଶ + 2ܽାିଵ. Summing over all 
blocks then yields 

ܲ ≤ ܵ + ;ܭ2 					(∗∗) 
Equality in (∗∗) is possible only if the length ݈ of the block is odd. Indeed, if 2 ∣
݈, all inequalities participanting in the sum must be equalities, so in particular 
ܽାିଶ = 2ܽାିଵ , which contradicts the condition ܽାିଶ ≤ ܽାିଵ > 0. 
Summing (∗) and (∗∗) gives us 0 ≤ (݊)ܥ) − 2)ܲ, and therefore ܥ(݊) ≥ 2. 
Morever, if ܥ(݊) = 2, all blocks must have odd lengths, which implies that ݊ is 
even. Conversely, the example ݔ = (−1)  shows that ܥ(݊) = 2 for even n. 
 
1.9 Let  be a positive integer and let ܖ be the smallest positive 
integer having exactly  divisors. If  is a perfect cube, can the 
number  have a prime divisor of the form  + ? 

Bojan Basic-Serbian TST-2017 

Solution: Suppose that such a ݇ exists. Let ଵ < ଶ < ⋯ be all primes in the 
increasing order and let ݊ = ∏ 

ఈ
ୀଵ ߙ) > 0), where ݇ = ଵߙ) + 1) … ߙ) +

1) and 3 ∣ ଵߙ  for all ݅. By the minimality of ݊ we haveߙ ≥ ⋯ ≥ ߙ > 0. 
Lemma. Suppose that ߙ + 1 = ܾܽ for ܽ, ܾ ∈ ℕ − {1}. If ௦ <  <   ௦ାଵ, then

௦ߙ ≥ ܾ − 1 ≥  ௦ାଵߙ
Proof. The number ݊ଵ = 

(ఈೞାଵ)ିଵ௦ିଵ∏ 


∉{,௦}  also has ݇ divisors, so it 

satisfies ݊ଵ ≥ ݊. However, this reduces to ቀೝ
ೌ

ೞ
ቁ
ఈೞିାଵ

≥ 11,i.e. ߙ௦ ≥ ܾ − 1. 

Similarly, ݊ᇱଵ  =
(ఈೞశభାଵ)ିଵ௦ାଵିଵ∏ 


∉{,௦ାଵ} ≥ ݊ yields ߙ௦ାଵ ≤ ܾ − 1. 

Consider the largest ݎ such that ߙ + 1 = ܾܽ for some ܽ ≡ ܾ ≡  ,(3	݀݉)	2
and let ݏ and ݐ be such that ௦ <  < ௧ ௦ାଵ and <  <  ௧ାଵ. Observe that
Bertrand,s postulate implies ଵ

ଶ
 < ௦ାଵ ௦ and < 2 , hence ିଵ < ௦ <

 < ௦ାଵ <   ାଵ and analogously
௧ିଵ < ௧ <  < ௧ାଵ <  ାଵ

 
1.10 300 contestants participated in a competition. Every two 
contestants either know each other or do not know each other and 
there are no three contestants who know each other. Each contestant 
knows at most  contestants. Find the maximum possible value of . 
 

B.Khoroldagva,Sh.Dorjsembe-Mongolian NMO-2017 
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Solution: Let ܣଵ, … ܣ ଷdenote the 300 contestants. Ifܣ,  and ܣ  know each 
other then we connect them. Denote by |ܣ| the number of contestants 
connected to ܣ. Suppose that there is a contestant who knows exactly 201 
contestants. Without loss of generality we may assume that ܣଶଶ is connected 
to ܣଵ, … (1ܣ ଶଵ. Since there is no triangle with vertices onܣ, ≤ ݅ ≤ 202)	we 
have |ܣ| ≤ 99 for ݅ ≤ 201. Hence we must have 

:|ܣ|} 202 ≤ ݅ ≤ 300} ⊇ {100, … ,201} 
which is impossible. So ݊ ≤ 200. 
Now let us show that ݊ = 200 can be attained. We connect ܣଶା  to each of 
ܣ , … ݅ ଶ forܣ, = 1,100തതതതതതത. Then |ܣଶା| = 201 − ݅ and |ܣ| = ݅ for ݅ = 1,100തതതതതതത.  
 
1.11 Let  ≥  be an integer. Prove that there exist positive integers 
,࢞ … ,࢟ in geometric progression and positive integers ࢞, …  in ࢟,
arithmetic progression such that ࢞ < ࢟ < ࢞ < ⋯ < ࢞ <  .࢟

Singapore-SMO-2017 

Solution: By the binomial theorem, we have for ݇ ≥ 2 and ܽ ≤ ଵ
మ

, 

(1 + ܽ) = 1 + ݇ܽ + ܽ ቆ
ܽ݇(݇ − 1)

2!
+
ܽଶ݇(݇ − 1)(݇ − 2)

3!
+⋯+

ܽିଵ݇!
݇!

ቇ ≤ 

≤ 1 + ݇ܽ + ܽ ቆ
݇(݇ − 1)

݇ଶ
∙

1
2!

+
݇(݇ − 1)(݇ − 2)

݇ସ
∙

1
3!

+ ⋯+
݇!

݇ଶିଶ
∙

1
݇!
ቇ ≤ 

≤ 1 + ݇ܽ + ܽ ൬
1
2!

+
1
3!

+⋯+
1
݇!
൰

< 1 + ݇ܽ + ܽ ൬
1

1 ∙ 2
+

1
2 ∙ 3

+⋯+
1

(݇ − 1) ∙ ݇
൰ ≤ 

≤ 1 + ݇ܽ + ܽ ൬1−
1
݇
൰ < 1 + (݇ + 1)ܽ. 

Let ܺ = ቀ1 + ଵ
మ
ቁ


, ݇ = 1,2, … ,݊. Then, for 2 ≤ ݇ ≤ ݊, ଵ
మ
≤ ଵ

మ
. Therefore  

1 +
݇
݊ଶ

< ܺ < 1 +
݇ + 1
݊ଶ

. 

Let ݔ = ݊ଶ ቀ1 + ଵ
మ
ቁ


 and ݕ = ݊ଶ + (݇ + 1)݊ଶିଶ ,݇ = 1,2, … ,݊.  
Then ݔଵ < ଵݕ < ଶݔ < ⋯ < ݔ <  .ݕ
1.12 There are 2017 distinct points in the plane. For each pair of these 
points, construct the midpoint of the segment joining tha pair of 
points. What is the minimum number of distinct midpoints among all 
possible ways of placing the points? 

Singapore SMO-2017 
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Solution: Suppose the points are placed on the ݔ −axis with coordinates 
(݅, 0), ݅ = 0,1, … ,2016. Then midpoints are ቀ

ଶ
, 0ቁ , ݅ = 1,2, … ,4031. Thus there 

are 4031 distinct midpoints. Next we shall prove that there are at least 4031 
distinct midpoints. Let ܣଵ, …  ଶ areܣ,ଵܣ ଶଵ be the points and assume thatܣ,
the pair that are furthest apart. Consider the 4030 segments from ܣଵ and ܣଶ 
to ܣଷ, … ଶଵହܣ, . The midpoints are distinct. For if ܺ,ܻ are two points so that 
the midpoints of ܣଵܺ and ܣଶܻ coincide, then we have two cases. If the four 
points are not collinear, then they are vertices of a parallelogram with ܣଵܺ, 
 ଶ as a side. This is not possible as the longerܣଵܣ ଶܻ as diagonals andܣ
diagonal is longer than a side. Otherwise ܣଵ,ܣଶ,ܺ,ܻ are collinear. Then it is 
easy to verify that if ܺ is in the segment ܣଵܣଶ, then ܻ must be outside making 
ଶܣଵܣ < ଶܣଵܣ ଶܻ, a contradiction. Also none of these midpoint ofܣ . Thus we 
have at least 4031 distinct midpoints.In conclusion, the minimum number of 
midpoints is 4031. 
 
1.13 Five teams play in a soccer competiton where each team plays 
one match against each of the other four teams. A winning team gains 
5 points and a losing team 0 points. For a 0-0 draw both teams gain 1 
point, and for other draws (1-1,2-2,etc) both teams gain 2 points. At 
the end of the competition, we write down the totalpoints for each 
team, and we find that they form five consecutive integers. 
What is the minimum number of goals scored? 

Gordon Lessels-Ireland SHL-2017 

Solution: Case (a) Number of wins is odd. 3 wins yield 15 points and the other 
seven matches yield more than 10 points. The only possibility is one win, 8 0-0 
draws and one score draw. But the team that wins must gain at least 3 points 
in the other matches. Hence this case is impossible. 
Case (b) The number of wins is even and cannot be 4 as only three teams have 
a score of five or more and none have a score of 10. No wins means there are 5 
score draws and 5 no score draws. The teams scorin 8 and 7 must be insolved 
in 7 score draws to achieve these totals. Hence, the only possibility is 2 wins 2 
score draws and 6 no score draws. The table 

 A          B          C          D          E Total 
A 
B 
C 
D 
E 

              5          1          1          1 
0                        1          1          5 
1           1                       2          2 
1           1           2                      1 
1           0           2           1               

8 
7 
6 
5 
4 
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Realises this possibility. The minimum number of goals in this case is 6. 
Case (c) The number of wins is odd. No team has more than one win. If the 
number of wins is five, each team must win one match and all other matches 
are no score draws. A total of 9 is now impossible. If the number of wins is 3, 
there must be 3 score draws and 4 no score draws. At least 9 goals are scored 
in this scenario. If the number of wins is 1, there are 6 score draws and three 
no score draws. This gives at least 13 goals. 
Case (d) Again we can calculate the number of wins (W), score draws (S) and 
no score draws (N) yields 40 points. The four possibilities are (W,S,N)=(6,1,3) or 
(4,4,2) or (2,7,1) or (0,10,0). The minimum number of goals is W+2S which in 
each case is bigger than 6. 
Case (e) Calculating possible values of (W,S,N) we obtain (7,2,1),(5,5,0) giving 
more than 6 goals. Thus the minimum number of goals scored in the 
tournament is 6. Ten matches are played each one contributing either 2,4 or 5 
points. Hence the total number of points is between 20 and 50. 
In the team scores are five consecutive integers, then the total number of 
points must be a multiple of 5. If the total number of points is 20, all teams will 
score 4 and if the total number of points is 50 all team totals will be multiples 
of 5. Neither of these possibilities satisfy the conditions. Therefore, we need to 
consider the following five cases: 
1. scores are 3,4,5,6,7         1. scores are 6,7,8,9,10 and 
2. scores are 4,5,6,7,8         2. scores are 7,8,9,10,11 
3. scores are 5,6,7,8,9 
 
 1.14 On a ૠ × ૠ board, some of the squares are occupied by 
a single ladybird; the rest of the squares are empty. The ladybirds 
move, never leaving the board, according to the following principles. 
Every second, each ladybird moves to a neighbouring square. The 
moves are horizontal (to the square immediately to the right or to the 
left of the current square), or vertical ( to the square above or below 
the one currently occupied). A ladybird which makes a must move 
vertically in its next move. Similarly, a ladybird which makes a vertical 
move must move horizontally in its next move. 
Determine the smallest number of ladybirds such that, regardless of 
their initial position and their chosen paths, we may be sure that two 
of them will eventually find themselves in the same square, at the 
same moment. 

Croatian NMO-2017 
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Solution: We claim that the required number is 2016ଶ + 1. Let us first show 
that we can find an arrangement of 2016ଶ ladybirds and chose their paths so 
that no two accupy the same square at the same moment in time. We place 
the ladybirds in the lower left 2016 × 2016 squares of the board and let them 
all move in the same manner: up, right, down, left, up, right... We see that no 
two ladybirds will meet after the first 4 seconds. Since we arrive at the initial 
position after that, we see that no two ladybirds will ever occupy the same 
square at the same time. 

 
We now show that, if the board contains 2016ଶ + 1 ladybirds, a collision must 
occur, regardless of the initial arrangement and the ladybirds’ paths. 
We label the squares with one of the four labels, ܥ,ܤ,ܣ and ܦ, so that the 
squares in odd rows alternate between labels ܣ and ܤ, while the squares in 
even rows alternate between ܥ and ܦ. We will call a square which has been 
labelled by ܣ an ܣ −square. 

 
Two observations are crucial for our solution. A ladybird occupying a 
ܤ −square or a ܥ −square will after ݁݊ second move to an ܣ −square or a 
ܦ −square. Similarly, a ladybird which occupies an ܣ −square will after ݓݐ 
seconds be sitting in a ܦ −square. 
The board contains 2016ଶ + 1 ladybirds, so we can assume that at least 
1008 ∙ 2016 + 1 of them occupy an ܣ −or a ܦ −square. If the opposite were 
true, we would have at least 1008 ∙ 2016 + 1 on a ܤ −square or a ܥ −square, 
so the after one second we would arrive at the desired situation. Since the 
number of ܦ −squares equals 1008ଶ  ,the ܣ −squares contain at least 
1008ଶ + 1 ladybirds. 
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All the ladybird which are now occupying the ܣ −squares will after two 
seconds move to ܦ −squares. This means that there will be at least 1008ଶ + 1 
ladybirds on 1008ଶ	ܦ −squares, so that at least two of them will be in the 
same squre.  
 

1.15	 Find all quadruples (࢈,ࢇ,  of integers satisfying the system of (ࢊ,ࢉ
equations −ࢇ + ࢈ + ࢉ + ࢊ = ,ࢇ + ࢈ + ࢉ + ࢊ = .	Answer: 
(,,,), (,,,), (,,,), (,,−,−), (,−,,−) and 
(,−,−,) 

Estonian NMO-2017 

Solution: Note that −ܽଶ + ܾଶ + ܿଶ + ݀ଶ = −2ܽ(ܽ + ܾ + ܿ + ݀) +
(ܽ + ܾ)ଶ + (ܽ + ܿ)ଶ + (ܽ + ݀)ଶ. By second equation, 2ܽ + ܾ + ܿ + ݀ = 1−
ܽ, so the first equation reduces to  2ܽ(ܽ − 1) + (ܽ + ܾ)ଶ + (ܽ + ܿ)ଶ +
(ܽ + ݀)ଶ = 1.If ܽ > 1 or ܽ < 0 then 2ܽ(ܽ − 1) is a positive even number, 
whence the Lhs of the last equation is greater then 1. If ܽ = 0 then according 
to   the first equation exactly one number among ܾଶ, ܿଶ and ݀ଶ is equal to 1, 
others are zero. Value  -1 together with zeros would not satisfy the second 
equality, thus one ܽ, ܾ, ܿ and ݀ must be 1, while others are zero. If ܽ = 1 then 
according to the first equation exactly two numbers among ܾଶ , ܿଶ and ݀ଶ are 
equal to 1 and the remaining number is zero. The second equation is satisfied 
only is both non-zero variables take value -1.  
  

1.16 Find all positive integer  for which the integers ,, … ,ૠ 
can be divided into  groups in such a way that the sums of numbers 
in these groups are  consecutive terms of an arithmetic sequence. 

Estonian NMO-2017 

Solution: Let the arithmetic sequence have the first term ܽ and the common 
difference ݀. The sum of all terms equals the sum of numbers 1,2,...,2017, i.e., 
ଶା(ିଵ)ௗ

ଶ
∙ ݇ = ଶଵ∙ଶଵ଼

ଶ
, hence  (2ܽ + (݇ − 1)݀) ∙ ݇ = 2017 ∙ 2018 = 2 ∙

1009 ∙ 2017. Thus the product 2 ∙ 1009 ∙ 2017 is divisible by ݇. Since 2,1009 
and 2017 are primes and ݇ ≤ 2017 by assumption, the only possibilities are 
݇ = 1,݇ = 2, ݇ = 1009 and ݇ = 2017.	All these can occur indeed. A partition 
into 1 group trivially satisfies the conditions. An arbitrary partition into 2 
groups also provides two consecutive terms of some arithmetic sequence. 
Coupling each even number with the next odd number, we get 1008 groups of 
size 2, whose sums are consecutive terms of the arithmetic sequence 5,9,13... 
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Forming one additional group containing 1 as the only element, we obtain a 
partition satisfying the conditions. Finally, the conditions will also be met by 
the partition where every integer 1,2,...,2007 belongs to a separate group. 
 

1.17 Find all positive integers  for which all positive divisors of , 
taken without repetitions, can be placed into a rectangular table in 
such a way that each cell contains exactly one divisor, all row sums are 
equal and all column sums are equal. 

Estonian NMO-2017 

Solution: Suppose that all positive divisors of ݊ can be arranged as a 
rectangular table of size ݇ × ݈. Assume w.l.o.g. that ݇ ≤ ݈(݇ is the number of 
rows). Let the sum of the numbers in each column be ݏ, as ݊ occurs somewhere 
in the table, we must have ݏ ≥ ݊, whereby equality can hold only if ݇ = 1. For 
every ݆ = 1,2, … , ݈, let ݀. As the divisors of ݊, are among ݊, 

ଶ
, 
ଷ

, …, this chain 

of inequalities implies ݀ ≤


. Since the average we also have ݀ ≥

௦

≥ 


. 

These inequalities together imply 

≤ ݀ ≤



. Hence ݇ ≥ ݈. As we assumed 

݇ ≤ ݈, we conclude that ݇ = ݈. Therefore all these inequalities must actually be 
equalities. In particular ݏ = ݊, implying ݇ = ݈ = 1. Consequently, ݊ has only 
one divisor, i.e., ݊ = 1. 
 

1.18 Masha has an electric carousel in her garden that she rides every 
day. As she likes order , she always leaves the carousel in the same 
position after each ride. But every night three bears sneak into garden 
and start turning the carousel. Bear dad turns the carousel each time 
by 

ૠ
 of the full circle. Bear mum turns the carousel each time by 

ૢ
 of 

the full circle. Bear cub turns the carousel   each time by 


 of the full 
circle. Every bear can turn the carousel as many times as he she wants. 
In how many different position may Masha find the carousel in the 
morning? 

Estonian NMO-2017 

Solution: As 7 ∙ 9 ∙ 32 = 2016, all turns are integral multiples of ଵ
ଶଵ

 of the 
full turn. Thus the carousel can be in at most 2016 distinct positions. It 
remaining to show that all these positions are impossible. For that, we show 
that the bears can turn the carousel by exactly ଵ

ଶଵ
 of the full turn. Then the 
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same sequence of operations can be repeat to obtain also ଶ
ଶଵ

, ଷ
ଶଵ

, … , ଶଵ
ଶଵ

 of 

the full turn. Exactly ଵ
ଶଵ

 of the full turns is obtained, for instance, if bear dad 
turns the carousel once in one direction and both bear mum and bear cub turn 
the carousel once in the opposite direction since ଵ


− ଵ

ଽ
− ଵ

ଷଶ
= ଶ଼଼ିଶଶସିଷ

ଶଵ
=

ଵ
ଶଵ

 
 

1.19 Let  and  be positive integers. What is the biggest number of 
points that can be marked in the vertices of the squares of the  ×  
grid in such a way that no three of the marked points lie in the vertices 
of any right-angled triangle? 

Estonian NMO-2017 

Solution: All vertices of squares lie on ݊ + 1 horizontal and ݉ + 1 vertical 
lines. Suppose that at least ݊ +݉ + 1 points are marked in the grid. Because 
݉ > 0, the number of marked points is greater than ݊ + 1. Hence by the 
pigeonhole point. Hence at most ݊ marked points are alone on their horizontal 
lines. Similarly, at most ݉ marked points are alone on their vertical lines. Thus 
there exists a marked point that lies neither alone on its horizontal line nor 
alone on its vertical line. So at most ݊ + ݉ points can be marked according to 
the conditions of the problem. 

 
By marking all vertices of squares of the grid that lie at the left and lower edge 
of the grid except for the lower left corner we have marked exactly ݊ +݉ 
points (Fig.13 depicts the choice for a 5 × 7 grid). Any three of the marked 
points either lie on a common line or are the vertices of an obtuse triangle, so 
the construction satisfies the condition of the problem. 
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1.20 Do there exist distinct positive integer ࢞ and ࢟ such that the 
number ࢞ + ࢞ is divisible by 2016, the number ࢟ −  is divisible by ࢟
2017 and the number ࢟࢞ is divisible by 2018? 

Estonian NMO-2017 

Solution: For example, numbers ݔ = 2016 ∙ 2015 − 2018 and ݕ = 2018 
meet the conditions. As 2016 ∙ 2015 > 4 ∙ 1009 = 2 ∙ 2018 implies ݔ >  ,ݕ
they are distinct. The sum 2016 ∙ 2015 is divisible by 2016 and the product is 
obviously divisible by 2018. Furthermore, ݔ − ݕ = 2016 ∙ 2015 − 2 ∙ 2018 =
(2017 − 1)(2017 − 2) − 2 ∙ (2017 + 1) = 2017ଶ − 3 ∙ 2017 + 2− 2 ∙
2017 − 2 = 2017 ∙ 2012, where the distance of these numbers is divisible by 
2017. Remark. This choice of the numbers is not only possible. One can prove 
that all suitable numbers are of the form ݔ = 2016݇ − 2018݉ and 
ݕ = 2018݉, where ݇ and ݉ are integers such that ݇ + 2݉ is divisible by 2017. 
Indeed, as 2018 = 2 ∙ 1009 and 1009 is prime, one of ݔand ݕ must be divisible 
by 1009. Also one of ݔ and ݕ must be even, but as ݔ +  is divisible by the even ݕ
number 2016, both must be even. Consequently, one of these numbers must be 
divisible by 2018. Let w.l.o.g. ݕ = 2018݉. As ݔ + ݕ = 2016݇, we must have 
ݔ = 2016݇ − 2018݉.  Then ݔ − ݕ = 2016݇ − 2 ∙ 2018݉ = 2017(݇ −
2݉) − (݇ + 2݉), whence ݔ − ݇ is divisible by 2017 if and only if ݕ + 2݉ is 
divisible by 2017. The pair in the solution is obtained by taking ݇ = 2015 and 
݉ = 1. 
 
1.21 Find all solutions of the equation ࢇ + ࢈ + ࢉ =  in natural 
numbers that satisfy (࢈,ࢇ)ࢊࢉࢍ = ,࢈)܌܋, (ࢉ = , and  

(ࢇ,ࢉ)܌܋ = . 
Estonian NMO-2017 

Solution: As ݃ܿ݀(ܽ, ܾ) = 2,݃ܿ݀(ܾ, ܿ) = 3, and ݃ܿ݀(ܿ,ܽ) = 5, the number ܽ 
is divisible by both 2 and 5, the number ܾ is divisible by both 2 and 3, and the 
number ܿ is divisible by both 3 and 5. Hence ܽ is divisible by 10, ܾ is divisible by 
6 and ܿ is divisible by 15. As 61 gives remainder 1 when divided by each 3,5 
and 2, the numbers ܽ, ܾ and ܿ must give remainder 1 when divided by 3,5 and 
2, respectively. Since ܽ, ܾ, ܿ ≤ 61, the possibilities are ܽ = 10 or ܽ = 40, ܾ = 6 
or ܾ = 36, and ܿ = 15, or ܿ = 45. The sum 61 appears in three cases: 
ܽ = 10, ܾ = 6, ܿ = 45; ܽ = 10, ܾ = 36, ܿ = 15; ܽ = 40, ܾ = 6, ܿ = 15. A 
straightforward check shows that the conditions ݃ܿ݀(ܽ, ܾ) = 2,݃ܿ݀(ܾ, ܿ) = 3, 
and ݃ܿ݀(ܿ,ܽ) = 5 are also  met in all these cases. 
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1.22 In the mathematics circle, Juku raised a hypothesis that, for every 
integer  > 4, at least one out of the two largest integers that are less 
than 


 is relatively prime to n. Is  Juku’s hypothesis valid? 

Estonian NMO-2017 

Solution: If ݊ is odd then the largest integer that is less than 
ଶ

 is ିଵ
ଶ

. Let ݀ be 

a common divisor of numbers ିଵ
ଶ

 and ݊. Then ݀ is a common divisor of 

numbers ݊ − 1 and ݊, implying that ݀ = 1. Hence ିଵ
ଶ

 and ݊ are relatively 
prime, meaning that the hypothesis holds in the case of odd numbers. 
If ݊ is even then the two largest integers that are less than 

ଶ
 are 

ଶ
− 1and 


ଶ
− 2. Let ݀ଵ be a common divisor of numbers 

ଶ
− 1 and ݊, and let ݀ଶ be a 

common divisor of numbers 
ଶ
− 2 and ݊. Then ݀ଵ is a common divisor of 

numbers ݊ − 2 and ݊, and ݀ଶ is a common divisor of numbers ݊ − 4 and ݊. 
Hence ݀ଵ divides 2, i.e. is either 1 or 2, and ݀ଶ divides 4, i.e. is either 1 or 2 or 4. 
If ݀ଵ and ݀ଶ were both larger than 1, they both should be even, whence their 
multiples 

ଶ
− 1 and 

ଶ
− 2 are consecutive integers. The contradiction shows 

that at least one of the divisors ݀ଵ and ݀ଶ equals 1. Thus one of 
ଶ
− 1 and 


ଶ
− 2 is relatively prime to ݊, meaning that the hypothesis holds in the case of 

even numbers, too. 
 

1.23 Given positive integers ࢈,ࢇ,  and ࢊ and ࢉ
ࢇ) + ࢇ)(࢈ + ࢇ)(ࢉ + ࢈)(ࢊ + ࢈)(ࢉ + ࢉ)(ࢊ + (ࢊ =  ,࢛

࢈ࢇ + ࢉࢇ + ࢊࢇ + ࢉ࢈ + ࢊ࢈ + ࢊࢉ =  ,࢜
prove that the product ࢛࢜ is divisible by 3. 

Estonian NMO-2017 	 

Solution: If among numbers ܽ, ܾ, ܿ,݀ there are two that give either 
remainders 0 and 0 remainders 1 and 2 modulo 3, the sum of these two 
numbers is divisible by 3. Hence ݑ, as well as ݒݑ, is divisible by 3. Now study 
the case where at most one among the numbers ܽ, ܾ, ܿ,݀ is divisible by 3 and 
all numbers not divisible by 3 are congruent modulo 3. If exactly one among 
numbers ܽ, ܾ, ܿ,݀ is divisible by 3 then the product of this numbers with all 
other numbers are divisible by 3. Other numbers form 3 pairs whose products 
of components are congruent modulo 3. Hence the sum ݒ of all six pairwise 
products are all congruent modulo 3. If none of ܽ, ܾ, ܿ,݀ is divisible by 3 then 
the pairwise products are all congruent modulo 3.  Again, as the number of 
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pairs is divisible by 3, this implies that the sum ݒ of the products is divisible by 
3. Consequently, ݒݑ is divisible by 3 in this case, too. 
 

1.24 How many pairs (࢈,ࢇ) of positive integers are there, which 
satisfy the following conditions ࢈ࢇ,࢈;ࢇ = ૢ!,ࢇ and ܊ are relatively 
prime. 

Japan NMO-2017 

Solution: There are 10 primes less than or equal to 29: namely 
2,3,5,7,11,13,17,19,23,29. Hence there are only 10 primes factors of the 
number 29!. Therefore, we can write the prime factor decomposition of the 
number 29! in the form ଵ

భ ଶ,
మ , … ଵ,

భబ, with ݎ ≥ 1 for each ݅. Since ܽ and ܾ 
are relatively prime, for each prime factor  of 29! , there are two separate 
cases: namely, either ܽ is a multiple of 

  or ܾ is. Therefore, we can conclude 
that there are exactly 2ଵ pairs (ܽ, ܾ) of relatively prime integers ܽ, ܾ satisfying 
ܾܽ = 29!.Among such pairs, there are same number of pairs with ܽ < ܾ and 
ܾ < ܽ. Since ܽ and ܾ are relatively prime, the case ܽ = ܾ cannot occur in our 

consideration, and therefore, we conclude that the answer is ଶ
భబ

ଶ
= 512. 

 

1.25 In the senior class of a certain high school, there are 30 students 
enrolled, and each student is assigned a distinct number chosen from 
1 through 30. One day a teacher gave a test consisting of certain 
number of problems. When the teacher graded the test, he realized 
that the following two propositions concerning a subset ܁ of the set 
{,, … ,} are mutually equivalent: 
(1) For every problem, there is some number ܓ belonging in the set ܁ 
such that the student with assigned number ܓ gave a correct answer 
to that problem. 
(2) Either ܁ contains all of the multiples of 2 greater than 1 and less 
than or equal to 30, or ࡿ contains all of the multiples of 3 greater than 
1 and less than or equal to 30, or ࡿ contains all of the multiples of 5 
greater than 1 and less than or equal 30. What is the smallest possible 
number of the problems given in the test? 

Japan NMO-2017   
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Solution: Let ܷ = {1,2, … ,30}. In the sequel, we do not distinguish the student 
with assigned number ݇ and ݇ considered as a number. Define subsets ܥ,ܤ,ܣ 
of ܷ as follows: 

ܣ = {݇ ∈ ܷ ݇⁄ ܤ;{2	݂	݈݁݅ݐ݈ݑ݉	ܽ	ݏ݅ = {݇ ∈ ܷ ݇⁄  {3	݂	݈݁݅ݐ݈ݑ݉	ݏ݅
ܥ = {݇ ∈ ܷ ݇⁄  {5	݂	݈݁݅ݐ݈ݑ݉	ݏ݅

We also denote by ܵ  the complement of ܵ ⊂ ܷ in ܷ. 
Call a set ܵ ⊂ ܷ a good set, if ܵ contains at least one of the sets ܥ,ܤ,ܣ a bad 
set, if otherwise. Note that when ܵ ⊂ ܶ ⊂ ܷ, if ܵ is a good set, so is ܶ while if 
ܶ is a bad set, so is ܵ. Call a bad set ܵ a maximal bad set, if any set ܶ satisfying 
ܵ ⊂ ܶ ⊂ ܷ	(ܽ݊݀	ܵ ≠ ܶ) is a good set. It is clear that any bad set is contained 
in some maximal bad set, and that ܵ ∪ ܶ is a good set if ܵ and  ܶ are distinct 
maximal bad sets. By assumption made for the problem, we see that if ܵ is a 
good set, then for every test problem, there is some member of ܵ who solved it 
correctly. On the other hand, if ܵ is a bad set, there must exist least one test 
problem, which is not solved correctly by any member of ܵ. In this case, choose 
one such problem, and call it ܳௌ. Now, suppose there are different maximal 
bad set ܵ and ܶ for which ܳௌ and ்ܳcoincide. If this happens, then we have the 
situation in which ܵ ∪ ܶ is a good set and there is a test problem ܳௌ(= ்ܳ) 
which was not solved correctly by any member of ܵ ∪ ܶ, which is a 
contradiction. Therefore, we conclude that problem ܳௌ	for a maximal bad set ܵ 
must be different for every such set ܵ, and this fact implies that we the number 
of test problems necessary to satisfy the requirement of the problem must be 
at least equal to the number of maximal bad sets involved. On the other hand, 
if the problem ܳௌ for maximal bad set ܵ is a distinct for each such ܵ, and if all 
of the students not belonging to ܵ solve the problem ܳௌ, then both of the 
conditions (1) and (2) of the problem are satisfied. Therefore, we conclude that 
the smallest possible number for the test problems necessary to satisfy the 
conditions of the problem must equal the number of maximal bad sets. The 
condition “ܵ ⊂ ܷ is a maximal bad set” is equivalent to the following 
condition: ܵ  intersects with each of ܥ,ܤ,ܣ and any non-empty set 
ܶ ⊂ ܵ(ܽ݊݀	ܶ ≠ ܵ) is a disjoint from at least on of ܥ,ܤ,ܣ. 
Such sets ܵ  can be classified as follows: 
     (1)   A set consisting of 3 elements chosen one each from the sets 
ܣ ∩ ܤ ∩ ܥ ܣ, ∩ ܤ ∩ ܥ ܣ, ∩ ܤ ∩ there are 8 ;ܥ ∙ 4 ∙ 2 = 64 ways of 
forming such sets. 
     (2)  (a) A set consisting of 2 elements chosen one each from the sets 
ܣ ∩ ܤ ∩ ܥ ܣ, ∩ ܤ ∩ there are 8 ;ܥ ∙ 1 = 8 ways of forming such sets. 
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1.26 Let ࡺ be a positive integer. Consider a sequence ࢇ,ࢇ, …  of ࡺࢇ,
positive integers, none of which is a multiple of ࡺା. For integers  
greater than or equal to ࡺ + , determine ࢇ in turn as follows: 
   Choose ܓ to be the number among ,, … , −  for which the 
remainder obtained when ࢇ is divided by  is the smallest, and 
define ࢇ = ࢇ. (if there are more than one such , choose the 
largest such ). Prove   that there exists a positive integer ࡹ for which 
ࢇ =  holds for every ࡹࢇ ≥  .ࡹ

Japan NMO-2017   

Solution: Let ݉ be the smallest number among ܽଵ,ܽଶ, … ,ܽ, and for ݊ 
greater than or equal to ܰ + 1, let ܮ be the largest number among 
ܽଵ,ܽଶ, … ,ܽିଵ. Since ܽ ≥ 2݉ for any ݊ ≥ ܰ + 1, we note that the smallest 
number among ܽଵ,ܽଶ, … ,ܽିଵ is always ݉. First, let us assume that there 
exists ܯ satisfying ܮெ < 2ெ . Since ܽ ≤ ݊  holds ifܮ2 ≥ ܰ + 1, we see that 
ାଵܮ ≤ ܮ2 < 2ାଵ must holds if ܮ < 2. Therefore, by induction we can 
conclude that ܮ < 2 holds for every ݊ ≥ ܮ If .ܯ < 2 , then it is clear than 
ܽ is twice the smallest number among ܽଵ,ܽଶ, … ,ܽିଵ, so that, we have 
ܽ = 2݉. Consequently, we have ܽ = 2݉ = ܽெ for every ݊ ≥  .ܯ
If we now assume that there is no ܯ for which ܮெ < 2ெ is satisfied. Then, we 
conclude that for an arbitrary ݊ ≥ ܰ + 1, ܮ ≥ 2 must hold. Let us denote by 
ܮ the largest non-negative number ܽ for which ܣ ≥ 2ା 	is satisfied. Then, 
there must exist an ݈ ≥ ܰ + 1 for which  
2ା ≤ ܮ < 2ାାଵ holds. But then, we have ܮାଵ ≥ 2ାାଵ, from which it 
follows that ܮ < 2ାାଵ ≤ ାଵܮ = ܽ holds. If we assume that ܽାଵ ≠ 2ܽ, 
then we see that it leads to ܮାଶ < 2ାାଶ, a contradiction. Therefore, we must 
have ܽାଵ = 2ܽ . Since, for ݊ = ݈ + 1, we have 2ା ≤ ܮ < 2ାା, we can 
show by induction that for every ݊ ≥ ݈ + 1,ܽ = 2ܽିଵ must hold, and 
therefore, ܽ = 2ିܽ holds for every ݊ ≥ ݈. 
     In view of the argument made above, we see that for ݊ ≥ ݈ the remainder 
obtained when ܽ is divided by 2ାଵ must less than or equal to ݉ because of 
the way that ܽାଵ is determined for such ݊. However, if we let ݎ be the 
remainder obtained when ܽ is divided by 2ାଵ, we can show by induction that 
the remainder obtained when for ݊ ≥ ݈ܽ is divided by 2ାଵ equals 2ିݎ. 
Since 2ିݎ ≤ ݉ holds for every ݊ ≥ ݈ + 1, we conclude that ݎ = 0 must hold. 
This implies that ܽ must be a multiple of 2ାଵ when ݊ ≥ ݈. On the other hand, 
by the assumption made for the problem, none of ܽଵ,ܽଶ, … ,ܽே is a multiple of 
2ାଵ, which contradicts the fact established above. 
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    In view of this contradiction, we conclude that exist an ܯ for which ܮெ < 2ெ  
is satisfied, proving the assertion of the problem. 
     

1.27 Bobby’s booby-trapped safe requires a 3-digit code to unlock it. 
Alex has a prove which can test combinations without typing them on 
the safe. The probe responds Fail if no individual digit is correct. 
Otherwise it responds Close, including when all digits are correct. For 
example, if the correct code is 014, then the responses to 099 and 014 
are both Close, but the response to 140 is Fail. If Alex is following an 
optimal strategy, what is smallest number of attempts needed to 
guarantee that he knows the correct code, whatever it is? 

Paul Jeffreys-British NMO-2017 

Solution (Neel Nanda): This is a solution to the first part, in which we prove 
that at least 13 guesses are required. Suppose that the first six attempts are 
Fail. Then, there must be at least 4 possibilities remaining for each of the digits, 
for a total of 64. We can check that, regardless of Alex’s next question, there 
can be more than 32 possible codes. 

 None of the digits are possible; in other words, they have all been ruled 
out by previous guesses. Then an answer of Fail would leave 64 
possible codes. 

 One of the digits in the guess is possible, and the other two have been 
ruled out by previous guesses. Then an answer of Fail would 48 
possible codes. 

 Two of the digits in the guess are possible, and the other one has been 
ruled out by previous guesses. Then an answer of Fail would leave 36 
possible codes. 

 There of the digits in the guess are possible. Then an answer of Close 
would leave 37 possible codes. 

With  the five remaining guesses, there can be at most 32 possible outcomes in 
total, and thus not all of the possibilities can be distinguished. Thus, at least 13 
guesses are required. 
 
1.28 Given any  −  two-element subset of set {,, …  prove ,{,
that one can always choose ܖ of these subsets such that their union 
contains at most 


 +  elements. 

Dusan Djukic NMO-2016 
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Solution: We shall prove by induction on ݇ ቀ݇ ≤ ଶିଵ
ଷ
ቁ that one can always 

remove 3݇ subsets such that the cardinality of the union of the remaining 
subsets does not exceed ݊ − ݇.	The case ݇ = 0 is trivial. Assume that ݇ ≥ 1 
and that we have removed 3(݇ − 1) subsets so that union of the remaining 
ones has at most ݊ − ݇ + 1 elements. Since 2݊ − 1 − 3(݇ − 1) <
2(݊ − ݇ + 1), there is an element ݔ from the union that is contained in at 
most three of the remaining 2݊ − 1− 3݇ subsets does not contain ݔ, which 
finishes the induction. The problem statement for ݇ = ቂିଵ

ଷ
ቃ as ݊ − ቂିଵ

ଷ
ቃ ≤

݊ − ିଷ
ଷ

= ଶ
ଷ
݊ + 1.  

 

1.29 A chessboard of size ( + ) × ( + ), with  > 0, is 
coloured so that each of its squares is either black or white. A square 
of the chessboard is called ܔ܉ܑ܋܍ܘܛ if there are at least ܖ other 
squares of the same colour in its row, and at least ܖ other squares of 
the same colour in its column. 
   1. Prove that there are at least  +  special squares. 
   2.  Give an example with at most  special squares. 
   3. Find the minimum possible number of special squares as a 
function of . 

Italian NMO-2014 

Solution: (a) This is a consequence of point (c). But for completeness we will 
give a simple proof. Let a square be in the majority in its row or column if it is 
of the same colour as at least ݊ other squares in its row and its column. 
Obviously, a square is special if it is in the majority in both its row and its 
column. The number of squares in the majority in at least one direction can be 
found by adding the number of squares in the majority in their row to the 
number of special squares, which were counted twice. We know that the total 
cannot be greater than (2݊ + 1)ଶ, and first two terms cannot be less than 
(2݊ + 1)(݊ + 1), so the number of special squares must be at least 
2(2݊ + 1)(݊ + 1) − (2݊ + 1)ଶ, which is 2݊ + 1. 
   (b) Colour the first row from the top completely black, the first column from 
the left, except the top left square, completely black, and the rest of the 
squares in alternating colours, like a chessboard. This way all the rows except 
for the first have majority of black squares. The special squares must then lie 
on the first row or the first columns. On the other hand, it’s easy to verify that 
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all the squares in the first row or the first columns are special except for the 
one in the top left corner. The total number of special squares is therefore 4݊. 
  (c) We will prove that there are always at least 4݊ special squares. The 
previous example lets us conclude that is the minimum amount. The 2݊ + 1 
rows of the chessboard are divided into ݎ௪ rows with a majority of white 
squares, and ݎ  rows with a majority of black squares. Similarly, the columns 
are divided into ܿ௪ with a white majority and ܿ  with a black majority. As we 
can rotate the chessboard by ninety degrees, which swaps the rows with the 
columns, and switch the colours around, we can assume that each of these 
four numbers is less than of equal to a ݎ௪. In particular, we know that ݎ௪ is at 
least ݊ + 1, otherwise ݎ௪ +  could not be equal to 2݊ݎ + 1. The ݎ௪ rows with 
a white majority contain at least (݊ + ௪ white squares, while the ܿݎ(1  
columns with a black majority contain at least (݊ + 1)ܿ  black squares. Those 
among these (݊ + ௪ݎ)(1 + ܿ) squares that do not lie in the intersection of a 
row with a white majority and a column with a black majority must therefore 
be special. The number of special squares cannot therefore be less than 
(݊ + ௪ݎ)(1 + ܿ)-ݎ௪ܿ. Since this is a degree one expression in ܿ, and the 
coefficient of ܿ  is either negative or zero, it has least value when ܿ, is as large 
as possible. On the other hand, ܿ  cannot exceed ݎ௪, so we have at least 
(2݊ + ௪ݎ(2 −  ,௪ between 2 and 2݊ inclusiveݎ ௪ଶ special squares. For values ofݎ
this last expression has value of at least 4݊.  
We are left with two cases: either ݎ௪ ≤ 1 or ݎ௪ = 2݊ + 1. The first is clearly 
impossible, as ݎ௪ is at least ݊ + 1. We will then examine the second case. Since 
௪ݎ = 2݊ + 1, there cannot be less than (2݊ + 1)(݊ + 1) white squares. If ܿ  
were greater than or equal to 2݊, there would be at least 2݊(݊ + 1) black 
squares. This means however that there would be more than (2݊ + 1)ଶ 
squares in total. It follows than ܿ  less than or equal to 2݊ − 1. In this case, 
then, there are at least (݊ + 1)4݊ − (2݊ + 1)(2݊ − 1) = 4݊ + 1 special 
squares.    
 

1.30 We have three numbered boxes and 10000 red balls, 10000 blue 
ones and 10000 yellow ones. Balls of the same colour are 
undistinguishable. Determine in how many ways they can be 
distributed in the boxes satisfying: 

 Each box has 10000 balls 
 No two boxes have the same amount of balls of the same 

color. 
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 For every two boxes  and , there is a color ܋ such that the 
number of balls of color ࢉ in ۯ is exactly 2015 or 2016 bigger 
the number of balls of color ࢉ in . 

Jose Luis Diaz Barrero-Barcelona Tech-Math Contest-2015 

Solution: Let us denote the boxes by ܤଵ ܤ)ܿ ଷ, respectively. Letܤ ଶ andܤ,  (ܤ,
be the color satisfying the third condition of the statement for ܤ  and ܤ . First, 
we observe that ܿ(ܤଵ  cannot be the same, because (ଵܤ,ଶܤ)ܿ ଶ) andܤ,
(ଵܤ)ܿ > (ଶܤ)ܿ and at the same time (ଶܤ)ܿ >  .which is impossible ,(ଵܤ)ܿ
WLOG. assume that ܿ(ܤଵ ଶܤ)ܿ  ଶ) is red andܤ,  .ଵ) is blueܤ,
If the difference of the number of red and blue balls is the same (either 2015 or 
2016), then in order for both boxes to have 10000 balls, there should be the 
same number of yellow balls in boxes ܤଵ and ܤଶ in contradiction with the 
second condition. So the difference is 2015 in one case and 2016 in the other. 
WLOG. ܤଵ has 2016 more red balls than ܤଶ and ܤଶ has 2015 more blue balls 
than ܤଵ. This means that ܤଶhas one more yellow ball than ܤଵ. 
We have that ܿ(ܤଵ,ܤଶ) and ܿ(ܤଷ  and (ଷܤ,ଶܤ)ܿ ଵ) are different, and so areܤ,
 .Since there are only three colors, one must be repeated .(ଶܤ,ଷܤ)ܿ
Let ݕ,ݔ,  ଷ, respectively. If itܤ,ଶܤ,ଵܤ be the number of balls of this color in ݖ
was either red or blue, we would have that |ݔ − ,|ݕ ݕ| − ,|ݖ ݖ| −  are all |ݔ
2015 or 2016, which is impossible. Hence the color is yellow, and ݕ − ݔ = 1. 
Now, there are two options: ݖ − ݔ = 2016 and ݖ − ݕ = 2015 or ݔ − ݖ =
2015 and ݕ − ݖ = 2016. If we substitute in ݔ + ݕ + ݖ = 10000, the first one 
gives 3ݖ − 4031 = 10000 and the second one gives 3ݖ + 4031 = 10000. 
The second one has no integer solutions and for first one we have ݖ = ଵସଷଵ

ଷ
=

4677, ݔ = ݖ − 2016 = 2661 and ݕ = ݖ − 2015 = 2662. 
Color ܿ(ܤଵ,ܤଷ) is either red or blue. If it is blue, ܤଶ would have 4031 more blue 
balls than ܤଷ, but that is not possible (if we had started by considering boxes 
 ଶ, we would have obtained the same conclusionܤ ଵ andܤ ଷ insteadܤ ଶ andܤ
that the differences are 2015, 2016 and 1). If color ܿ(ܤଵ,ܤଷ) is red, there are 
2015 more red balls in ܤଵ, 2661 in ܤଵ and 2661 in ܤଷ. This arrangement 
satisfies all the conditions of the statement. 
Finally, we need to see how many configurations we discarded in the “without 
loss of generality” parts. In the first one there were six possible choices for the 
pair of colors, and in the second one we could assign the 2015 to either red or 
blue (two options). Therefore the total number of arrangements is 6 × 2 = 12. 
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1.31 Let  ≥  be a positive integer. Consider a pile of  coins, one of 
which is fake. Suppose that all coins are either white or black and that 
if the fake coin is white, it is lighter than the others, and if the fake is 
black, it is heavier than the others. Furthermore, assume that the 
number of white coins and the number of black coins differ by at most 
one. Under these conditions, prove that the fake coin can be identified 
and classified as heavy or light by at most ܖ weighings in a scale. 

Jose Luis Dias Barrero-Barcelona Tech-Math Contest-2016 

Solution 

For each ݊ ≥ 1, let ܲ(݊) be the statement to be proven. We will argue by 
induction. Indeed, 

 Base step: For ݊ = 1, consider 3ଵ = 3 coins, and without loss of 
generality, suppose that two are black and one is white. Put a black on 
each pan and set the white aside. If the scale balances, then white coin 
is counterfeit, and since it is white, is lighter than the other coins. If the 
scales tips, say the left side down, then the black on the left is heavy 
and fake. In any case, the counterfeit coin is identified from among 
three coins and classified or light, so ܲ(1) holds. 

 Next we consider the case when ݊ = 3, assumng, for the moment, that 
ܲ(2) has been show. Consider 3ଷ = 27 coins, with, say, 14 black, and 
13 white. Partition these 27 coins into three groups, say ܩଵ =
,ܤ4) ଶܩ,(5ܹ = ,ܤ5) 4ܹ), and ܩଷ = ,ܤ5) 4ܹ) on the left, weighed 
against ܩଷ on the right. If the scale balances, the counterfeit coin is in 
group ܩଵ and so ܲ(2) applies to a set of 9 coins, 4 black and 5 white. If 
the left pan goes down, either one of the 5 black from ܩଶ is heavy, or 
one of the 4 white from ܩଷ is light. The induction hypothesis ܲ(2) now 
applies to these 3ଶ = 9 coins. Similarly, if the scale tips to the right, 
the counterfeit is among the 4 white in ܩଶ or the 5 black in ܩଷ, and 
again ܲ(2) applies. 

 Inductive step:  Fix ݇ ≥ 1 and assume that ܲ(݇) is true. Consider a 
collection of 3ାଵ	coins, one of which is counterfeit. Assume that there 
is one more black than white (the same argument works if there is no 

more white than black), so suppose that ଷ
ೖశభାଵ
ଶ

 are black and ଷ
ೖశభିଵ
ଶ

 
are white. Partition the coins into three groups, ܩଵ,ܩଶ and ܩଷ, each 
with 3 coins, and each with a near balance of black and white: in ܩଵ, 

put ଷ
ೖିଵ
ଶ

  black and ଷ
ೖାଵ
ଶ

 white coins. In both ܩଶ and ܩଷ, put ଷ
ೖାଵ
ଶ

 black 
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and ଷ
ೖିଵ
ଶ

 white coins. Putting ܩଵ aside, weigh ܩଶ on the left against ܩଷ 
on the right. If the scales balance, the counterfeit coin is in ܩଵ and 
ܲ(݇) applies to ܩଵ, finding the fake coin in an additional ݇ weighings, 
݇ + 1 in all, and so ܲ(݇ + 1) is true in this case. If the scales go down 

on the left, either one of the ଷ
ೖାଵ
ଶ

  black coins from ܩଶ is heavy, or one 

of the ଷ
ೖିଵ
ଶ

 white coins from ܩଶ is light and these ଷ
ೖାଵ
ଶ

+ ଷೖିଵ
ଶ

= 3  
coins satisfy the hypothesis for ܲ(݇), and so the coin is found in ݇ + 1 
weighigs. The analogous argument works when the right pan lowers. 

Finally, by mathematical induction, for each ݊ ≥ 1, we conclude that ܲ(݊) 
holds. 

 

1.32	There are ܖ −  bulbs in a line. Initially, the central (ܖ −  (ܐܜ
bulb is on, whereas all others oare off. A step consists of choosing a 
string of at least three (consecutive) bulbs, the leftmost and rightmost 
ones being of all between them on, and changing the states of all 
bulbs in the string (for instance, the configuration •∘∘∘• will turn into 
∘•••∘).At most how many steps can be performed? 

Dusan Djukic-Serbian NMO-2017  

Solution: The answer is ቂଶ
శభିହ
ଷ

ቃ.	Assign to the ݅ −th bulb number 2|ି| and 
define the value of a configuration as the sum of numbers assigned to the 
bulbs that are on. The initial configuration has value 1. With each step, the 
value increases by a multiple of 3. If a step switches the ݊ −th bulb, the value 
increases by exactly 3; we call such steps good.Since the value cannot exceed 

2ାଵ − 4 (for not all bulbs can be on), one cannot make more than ቂଶ
శభିହ
ଷ

ቃ 
steps. In order to show that this number can be attained, it suffices to show 

that at least ଶ
శభି
ଷ

 good steps can be made.We prove by induction on ݊ that, 
starting with a configuration of value at most 3, we can reach a configuration 
of value at least 2ାଵ − 6 by a sequence of good steps. For ݊ ≤ 2 this is 
directly verified. Let ݊ ≥ 3. By the inductive hypothesis for ݊ − 1, it is possible 
to reach a configuration, other than the outer two, the bulbs that are off can 
be (1°) only the ݊ −th, (2°) only the ݊ −th and an adjacent one, or (3°) only 
one bulb adjacent to the ݊ −th.In each of these cases, in at most three good 
steps we reach a configuration in which the two outer bulbs are on and the 
value of the rest of the configuration (not counting these two) is at most 3. 
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1									݊									2݊ − 1 
•∘… 			∘∘•∘∘ 		… ∘•				 

↓ 
∘• … ••∘∘∘ … ∘•	 

↓ 
∘• … •∘••• … •∘ 

(1°) 
 

1												݊				2݊ − 1 
•∘… 			∘∘••∘ 		… ∘•				 

↓ 
∘• … ••∘•∘ … ∘•	 

↓ 
∘• … 			•∘•∘∘ 		… ∘•				 

↓ 
∘• … •∘∘•• … •∘ 

(2°) 
1									݊									2݊ − 1 
•∘… 			∘∘∘•∘ 		… ∘•				 

↓ 
∘• … •••∘∘ … ∘•	 

↓ 
∘• … ••∘•• … •∘ 

(3°) 
Now we can apply the inductive hypothesis for ݊ − 1 again, finishing the 
induction. 
 
1.33 Suppose that a positive integer ܉ is such that, for any positive 
integer , the number ࢇ −  has a divisor greater than 1 and 
congruent to 1 modulo . Prove that ܉ is perfect square. 

Dusan Djukic NMO-2017 

Solution: As in the first solution, let ݊ଶܽ − 1 = ݔ݊) + ݕ݊)(1 − 1) i.e.  
ݕ − ݔ = ݊(ܽ − (ݕݔ = ݊݀. We distinguish three cases. 
൫1°൯ If ݀ > 0, then ܽ = ݀ + ݔ)ݔ + ݊݀) > ݊݀ݔ,  which is impossible 
for  ݊ ≥ ܽ. 
൫2°൯ If ݀ < 0, then  ܽ = ݀ + ݕ)ݕ − ݊݀) = ଶݕ − ݀(݊ݕ − 1) > ݕ݊ −
1, which is impossible for ݊ ≥ ܽ + 1. 
൫3°൯  If ݀ = 0, then ܽ =  .ଶ is a perfect squareݔ
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1.34 Define an  −magic square to mean an  ×  square matrix of 
non-negative integers such that the sum of all the entries in each row 
and each column is ܕfor some  ∈ ℕ∗. Also define as 
 −permutation matrix to mean an  × ) square matrix of  − ) 
zeroes and ܖ ones such that every row and every column of the array 
contains exactly one 1. Show that every  −magic square can be 
written as a sum of finitely many  −permutation matrices. 

India TST-2017 

Solution: Fix an ݊ ∈ ℕ. We will prove the following statement by Induction: 
ܲ(݉): Every ݊ −magic square with common sum ݉can be written as a sum of 
݉ permutation matrices. For the base case, we verify that ܲ(1) is true. Since 
all the entries are non-negative integers, the only way possible ݊ −magic 
squares with common sum 1 are exactly ݊ −permutation matrices.   Hence, 
every such matrices can be written as a sum of 1 ݊ −permutation matrix, i.e. 
itself. For the Induction Hypothesis, assume that the statement ܲ(݇) is true for 
some ݇ ∈ ℕ. Hence, every ݊ −magic square with common sum ݇ can be 
written as a sum of ݇	݊ −permutation matrices. Consider any ݊ −magic 
square ܣ with common sum ݇ + 1. We will prove that ܣ can be written as a 
sum of ݊ −permutation matrix and ݊ −magic square ܣଵ with common sum ݇. 
Consider the graph ܩ = defined as follows. Let ܴଵ,ܴଶ (ܧ,ܦ) , … ,ܴ  be the 
rows of ܣ and let ܥଵ ଶܥ, , … ܥ,  be the columns of ܣ . Consider ܦ =
{ܴଵ,ܴଶ , … ,ܴ} ∪ ଵܥ} ,ଶܥ, … ܴ }. Each of the setsܥ, = {ܴଵ,ܴଶ , … ,ܴ} and 
ܥ = ଵܥ} ,ଶܥ, …   } are independent sets. For everyܥ,
݅, ݆ ∈ ℕ,ܴ ܥ,  are connected by an edge if and only if ܽ > 0, where ܽ is the 
entry of ܣ in the ݅௧ row and ݆௧ column. Observe that from our definition, ܩ 
is bipartite graph. Consider some ܵ ⊆ ܴ. By ܰ(ܵ), we will denote the set of 
vertices which are adjacent to some vertex in ܵ. We will show that |ܰ(ܵ)| ≥
|ܵ|.	For every edge having an endpoint in ܵ, label that edge with ܽ. Consider 
the ‘sum’ of all such edges. Clearly, for each ܴ ∈ ܵ, the edges incident with ܴ  
contribute ݉ to this total. Hence, the total sum is given by ݉|ܵ|. Now these 
are edges are a subset of all edges with a endpoint in ܰ(ܵ). Hence, if we 
consider a similar such sum for the set ܰ(ܵ), we get the sum to be ݉|ܰ(ܵ)|. 
As observed before, we see that  ݉|ܵ| ≤ ݉|ܰ(ܵ)|. Hence, we get that 
|ܰ(ܵ)| ≥ |ܵ|. Since ܵ was any arbitrary subset of ܴ, we that this is true for all 
subsets of ܴ.Since the hypothesis for Hall’s Matching Theorem is satisfied, an 
application of it implies that there exists a matching in the above bipartite 
graph ܩ. Since |ܴ| = |ܥ| = ݊, we see that the matching is nothing but a 
bijective function ߪ:ℕ → ℕ where ߪ(݅) is defined to be the index of the 
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element in ܥ which is matched with ܴ. Note that ߪ can also be through of as a 
permutation of ℕ. We also know that ܴ ∩ ܥ = ൛ܽൟ,∀݅, ݆ ∈ ℕ . Since ߪ is a 
matching, we know that ܽఙ() > 0 for all ݅ ∈ ℕ. Consider the permutation 
matrix ఙܲ 	where each entry  is given by  

 = ൜ 1, ݂݅	݆ = (݅)ߪ
0, ,݅∀݁ݏ݅ݓݎℎ݁ݐ	݂݅ ݆ ∈ ℕ 

Also consider the matrix ܣଵ = ܣ − ఙܲ . Note that since ܽఙ() > 0 for all 
݅ ∈ ℕ, every entry of ܣଵ is non-negative. Also observe that since ఙܲ is a 
permutation matrix, the sum of entries in each row and each column reduces 
by 1. In effect, ܣଵ is still an ݊ −magic square with common sum ݇ − 1. This 
completes the inductive step. Hence by Induction, we see that the statement 
ܲ(݉) is true for all ݉ ∈ ℕ. The proof is complete. 
 

1.35 Find all positive integers ࢇ,ࢇ,ࢇ,࢈,࢈,࢈ such that  
࢈ࢇ + ࢈ࢇ +   divide࢈ࢇ
൫ࢇૠ + ൯࢈ + ൫ࢇૠ + ൯࢈ + ൫ࢇૠ +  ൯s  for any positive࢈
integer . 

Hong Kong-PreIMO 2017-MOCK EXAM 

Solution: Suppose that 
  ܽଶܾଶ݊ଶ + ܽଵܾଵ݊+ ܾܽ ∣ (ܽଶଶଵ + ܾଶ)݊ଶ + (ܽଵଶଵ + ܾଵ)݊ +
(ܽଶଵ + ܾ); (1) 
We first claim that ܽ = ܾ = 1. Let ݊ be a large multiple of ܾܽ. Since ܾܽ 
divides the left-hand side (1), it also divides the right-side and hence 
ܾܽ ∣ ܽଶଵ + ܾ. This implies ܽ ∣ ܾ and ܾ ∣ ܽଶଵ . This gives ܾܽ ∣ ܾ. 
The only possibility is ܽ = 1, which implies ܾ = 1. 
Let ܯ be a sufficiently large integer and let ݊ be the product of all primes less 
than ܯ. Choose any prime divisor 	of ܽଶܾଶ݊ଶ + ܽଵܾଵ݊+ 1; 		(2) 
Clearly, (,݊) = 1. Thus,  ≥ (ଵܽଶܽ,) In particular, we have .ܯ = 1 as ܯ is 
large.Consider any ݊ such that ݊ ≡ ݊(݉݀	). Then  divides the left-hand 
side of (1). This gives  

 ∣ (ܽଶଶଵ + ܾଶ)݊ଶ + (ܽଵଶଵ + ܾଵ)݊ + 2; (3) 
We choose ݊ such that  − 1 ∣ ݊. Such an ݊ exists by the Chinese remainder 
theorem. By Fermat’s little theorem, we obtain  ∣ (1 + ܾଶ)݊ଶ + (1 + ܾଵ)݊ +
2. Taking the difference with (3), as (,݊) = 1, we get  ∣ (ܽଶଶଵ − 1)݊ +
(ܽଵଶଵ − 1); (4) for any  
݊ ≡ ݊(݉݀	). By taking ݊ ≡ 	݀݉)1 − 1) and ݊ ≡ ݀݉)2 − 1) 
respectively, we have 

 ∣ (ܽଶଶଵ∙ଶ − 1)(ܽଵଶଵ − 1) − (ܽଵଶଵ∙ଶ − 1)(ܽଶଶଵ − 1) = 
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= (ܽଵଶଵ − 1)(ܽଶଶଵ − 1)(ܽଵଶଵ − ܽଶଶଵ) 
Since  ≥  is sufficiently large, the right-hand side must be 0. If one of ܽଵ,ܽଶ ܯ
is 1, then (4) implies both are equal to 1. If ܽଵ = ܽଶ, then (4) implies 
ܽଵ = ܽଶ = 1 or ݊ ≡  .(	݀݉)1−
We first consider the case ܽଵ = ܽଶ = 1. In that case, (1) becomes  
ܾଶ݊ଶ + ܾଵ݊ + 1 ∣ (1 + ܾଶ)݊ଶ + (1 + ܾଵ)݊ + 2 so that ܾଶ݊ଶ + ܾଵ݊ + 1 ∣ ݊ଶ +
݊ + 1. Note that ܾଶ݊ଶ + ܾଵ݊ + 1 ≥ ݊ଶ + ݊ + 1. This, equality must hold and 
hence ܾଵ = ܾଶ = 1. One easily checks that ܽ = ܽଵ = ܽଶ = ܾ = ܾଵ = ܾଶ = 1 
is a solution.Next, it remains to consider the case ݊ ≡   As .(	݀݉)1−
divides (2), this yields  ∣ ܽଶܾଶ − ܽଵܾଵ + 1. Since  is large, we must have 
ܽଶܾଶ − ܽଵܾଵ + 1 = 0. Then (2) becomes  
(ܽଵܾଵ − 1)݊ଶ + ܽଵܾଵ݊ + 1 = (݊ + 1)൫(ܽଵܾଵ − 1)݊ + 1൯. Therefore, 
instead of choosing any prime  dividing (2) at the beginning , we chose such a 
prime  dividing (ܽଵܾଵ − 1)݊ + 1. Therefore, same argument, we obtain 
either the same solution or  ݊ ≡  In the latter case, we find that .(	݀݉)1−
 ∣ −(ܽଵܾଵ − 1) + 1.Again, this forces ܽଵܾଵ = 2 as  is large. Thus, 
(ܽଵ, ܾଵ) = (1,2) or (2,1). Also, ܽଶܾଶ = ܽଵܾଵ − 1 = 1 so that ܽଶ = ܾଶ = 1. 
Now, by considering ݊ = 3 in (1), we have 16 ∣ 2 ∙ 3ଶ + (ܽଵଶଵ + ܾଵ) ∙ 3 + 2. 
As ܽଵ,ܾଵ have different parities, the right-hand side is odd. This is impossible. 
Therefore, the only solution is ܽ = ܽଵ = ܽଶ = ܾ = ܾଵ = ܾଶ = 1. 
 
1.36  Prove that there are no integer pairs (࢟,࢞) satisfying  

࢞ + ࢞ +  =  ࢟

Thailand NMO-2017 

Solution:Suppose for the sake of contradiction that an integer pair (ݕ,ݔ) 
satisfies  2560ݔଶ + ݔ5 + 6 = . Thus, 6ݕ ≡ ହݕ ≡  and so ,(5	݀݉)ݕ
ݕ ≡ ݕ Let ݇ be an integer such that .(5	݀݉)1 = 5݇ + 1. We now have 

ଶݔ2560 + ݔ5 + 6 = (2݇ + 5)ହ ≡ 1 + ൬
5
݆
൰

ହ

ୀଵ

(5݇). 

Dividing the above equation by 5 yields 
ଶݔ512 + ݔ + 1 = 5ସ݇ହ + 5ସ݇ସ + 10 ∙ 5ଶ݇ଷ + 10 ∙ 5݇ଶ + 5݇. 

Taking the above equation modulo 5, we obtain 2ݔଶ + ݔ + 1 ≡  .(5	݀݉)0
This makes 1 ≡ ଶݔ2 − ݔ4 + 2 = ݔ)2 − 1)ଶ(݉݀	5), and so 3 ≡ ݔ) −
1)ଶ(݉݀	5). This is a contradiction since 3 is not a square modulo 5. 
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1.37 Prove or disprove that there exist 2017 consecutive positive 
integers that cannot be written as ࢇ +  are ࢈ and ࢇ  where࢈
integers. 

Thailand NMO-2017 

Solution: We will prove that such a sequence exists. First we prove the 
following lemma. 
Lemma.  Let ݍ be a prime such that ݍ ≡ ݊ If  .(4	݀݉)3 ≡  ݊ then (ଶݍ	݀݉)ݍ
cannot be written as the sum of two squares. 
Proof.  Let ݍ be a prime such that ݍ ≡  and ݊ be an integer ,(4	݀݉)3
satisfying 	݊ ≡ ݍ Let ݇ be an integer where .(ଶݍ	݀݉)ݍ = 4݇ + 3. 
Assume to the contrary that ݊ can be written as ܽଶ + ܾଶ for some integers ܽ 
and ܾ.	Suppose  ݍ ∣ ܽ. Then since ݍ ∣ ܽଶ + ܾଶ, we get ݍ ∣ ܾ and so ݍଶ ∣ ܽଶ +
ܾଶ, contradicting our assumption. Hence ݍ ∤ ܽ, and ݍ ∤ ܾ. 
By Fermat’s little theorem we have ܽିଵ ≡ ܾିଵ ≡  (1)   .(ݍ	݀݉)1
On the other hand we have ܽଶ ≡ −ܾଶ(݉݀	ݍ), raising this to the (2݇ +
1) −th power yields: 

ܽସାଶ ≡ (ܽଶ)ଶାଵ ≡ (−ܾଶ)ଶାଵ ≡ −ܾସାଶ(݉݀	ݍ). 
Since ݍ − 1 = 4݇ + 2, this contradicts (1), thus ݊ cannot be written as the sum 
of two squares. 
To construct the required sequence, let ݍଵ, ,ଶݍ … ,  ଶଵ be a primes congruentݍ
to 3 modulo 4, and consider the following system of congruences: 

⎩
⎨

⎧ ݊ ≡ (ଵଶݍ	݀݉)ଵݍ
݊ + 1 ≡ (ଶଶݍ	݀݉)ଶݍ

⋮
݊ + 2016 ≡ ଶଵଶݍ	݀݉)ଶଵݍ )

 

Since all moduli are pairwise relatively prime, by Chinese Remainder Theorem 
there exists a solutions to this system modulo ∏ ଶଶଵݍ

ୀଵ . Let ܰ > 0 be a 
solution, then the lemma impies that ܰ,ܰ + 1, … ,ܰ + 2016 cannot be written 
as the sum of two squares. 
1.38  An  × )	 ≥ ) square is divided into  unit cells. Find all 
possible values of ܖ such that this square can be covered with some 
layers of 4-cell figures of the following shape  (i.e. each 
cell of the square must be covered with the same number of these 
figures) (The sides of each figure must coincide with the sides of the 
cells; the figures may be rotated but none of them can go beyond the 
bounds of the square) 

Belarusian NMO-2014  



DANIEL SITARU            MARIAN URSĂRESCU              FLORICĂ ANASTASE 
 

39 WORLD’S  MATH  OLYMPIADS 
 

Solution: If ݊ = 2݇,݇ ∈ ℕ, then this square can be covered with one layer 
(and then with any number of Layers) of the figures . 
     Let ݊ = 2݉ + 1,݉ ≥ 2. In this case we use chess coloring of the square. 
   Suppose that the square is covered with ݇ layers of given figures. We write 1 
and -1 in all black and in all white cells of the square respectively. Let ܤ(݊) and 
ܹ(݊) be the sums of the numbers in black and white cells of the square, 
respectively. Without loss of generality we can assume that ܤ(݊) > ܹ(݊). It is 
evident that ܤ(݊) + ܹ(݊) = 1. Now we sum up the numbers in all cells of the 
square so that we count each number in the cell as many times as the number 
of the figures covering this cell. Let ܵ be this sum. Since ݇ is the number of the 
figures covering each cell, we have ܵ = ݇൫ܤ(݊) +ܹ(݊)൯ = ݇. 
     On the other hand, any figure  covers the same number of 
black and white cells, so the sum of the numbers in the cells covered with this 
figure is equal to 0. Therefore, ܵ = 0, a contradiction. 
     Let ݊ = 4݉ + 2	(݉ ∈ ℕ). Using four colors we paint all cells of the square 
as it is shown in the figure (the number in the cell corresponds to the number 
of the color).  
 

1 2 3 4 1 2 
2 3 4 1 2 3 
3 4 1 2 3 4 
4 1 2 3 4 1 

1 2 3 4 1 2 
2 3 4 1 2 3 

 
Note that there is no cell with 4 th color in the 2 × 2 square in the right lower 
corner of the square. We place 1 in all cells painted second and third colors and 
place -1 in all remaining cells. As above we sum up the numbers in all cells of 
the square, then ܵ = 2݇, where ݇ is a number of layers. On the other hand, 
each figure covers exactly one cell of each color, so the sum of the numbers in 
the cells covered with this figure is equal to 0. 
    Therefore, ܵ = 0, a contradiction. 
    Remark. Similar arguments can be applied for the following coloring. See 
Fig.1 for ݊ = 4݉ + 2 and Fig.2 for ݊ = 2݉ + 1. 
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              (Fig.1)                                                                                                        (Fig.2) 
 
1.39 In Mathcontestland there are 2017 towns. Every pair of towns is 
either connected by a single road, or is not connected. If we consider 
any subset of 2015 towns, the total number of roads connecting these 
towns to each other is a constant. If there are ࡾ roads in 
Mathcontestland, then find all possible values of ࡾ. 
 

Jose Luiz Diaz Barrero-Barcelona Tech-MathContest-2017 

Solution: We consider the general case with ݊ towns. Let ܭ denote the 
constant number of roads connecting any subset of ݊ − 2 towns and let 
ܿ ∈ {0,1} denote the number of roads connecting town ݅ and town ݆. Finally, 
for ݅ = 1,2, … ,݊ let ݀ denote the total number of roads connected to town ݅. 
Note that 

ܴ ≤ ቀ
݊
2
ቁ =

݊(݊ − 1)
2

 

Clearly,  

݀



ୀଵ

= 2ܴ	ܽ݊݀	ܿ = ܴ, 

where the latter sum is over all 2-element subsets {݅, ݆} os {1,2, … ,݊}. 
This number of roads connected to at least one of the towns with number ݅ or ݆ 
is equal to ݀ + ݀ − ܿ. Thus for any 2-element subsets {݅, ݆} ⊂ {1,2, … ,݊}, 
we have  ܭ = ܴ − ݀ − ݀ + ܿ 
Adding all these equations for every 2-element subset {݅, ݆} yields  

ቀ
݊
2
ቁܭ = ቀ

݊
2
ቁܴ − 2(݊ − 1)ܴ + ܴ 

which may be written as ݊(݊ − ܭ(1 = (݊ − 2)(݊ − 3)ܴ 
Note that both ݊(݊ − 1) and (݊ − 2)(݊ − 3) are divisible by 2, and that the 
only integer ݇ > 2 which divides both ݊(݊ − 1) and (݊ − 2)(݊ − 3) is 3, this 
latter case occurring if and only if ݊ is divisible by 3. Since 3 does not divide 
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2017, in the situation of the given problem (ିଵ)
ଶ

 and (ିଶ)(ିଷ)
ଶ

 are coprime. 

Hence, ܴ is a multiple of (ିଵ)
ଶ

. As ܴ ≤ (ିଵ)
ଶ

 with equality when all the pairs 

of towns a are connected, the only possibilities are ܴ = (ିଵ)
ଶ

 or ܴ = 0. 
Therefore, the total number of roads is  ܴ = 2017 ∙ 1008 =  ݎ	2033136

	ܴ = 0. 
1.40 Determine the largest possible number of three-element sets that 
can be formed so that any two of these sets have exactly one common 
element, but there is not an element that belongs to all these sets. 
 

Belarusian NMO-2014  

Solution: Let ܰ be the required number of 3-element sets satisfying the 
problem condition. Suppose that ܰ ≥ 8. Let ܯ = ,ݕ,ݔ}  .be one of these sets {ݖ
Since the number of the remaining sets is greater than or equal to 7 and each 
such set has exactly one common element with ܯ, we see that there exists an 
element of ܯ (say, ݔ) that belongs to at least [7/3]=3 sets. Let the sets 
ଶܯ,ଵܯ  By condition, there is not an element that belongs to all .ݔ ଷ containܯ,
sets, so there exists a set (say, ܯ) such that there is an element from ܯ 
(say,	ݕ), which belongs to ܯ . It follows that ݔ ∉  . Since any two of the setsܯ
ݔ and) ݔ have not common elements except for ܯ ଷ andܯ,ଶܯ,ଵܯ ∉  ), so allܯ
four elements of the intersection of ܯ withܯଵ,ܯଶ,ܯଷ  .are distinct ܯ,
Therefore ܯ consist of at least four elements, a contradiction. Thus, ܰ ≤ 7. 
   It remains to show the example for ܰ = 7. The required sets (see the Fig.) are 
,{ܤ,ܭ,ܣ} ,[ܯ,ܲ,ܣ) ,{ܥ,ܰ,ܣ} ,{ܥ,ܯ,ܤ} ,{ܰ,ܲ,ܤ} ,{ܭ,ܲ,ܥ}    {ܰ,ܯ,ܭ}

 
1.41 There is a lamp on each cell of a ૠ × ૠ square board. 
Each lamp is either on or off. A lamp is called ܌܉܊ if it has an even 
number of neighbours that are on. What is the smallest possible 
number off bad Lampson such a board? 
     (Two lamps are neighbours if their respective cells share a side.) 

MEMO-2017 
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Solution: Please consult the figures at the end of this solution. 
We divide the square in 1 × 1 −squares and color the square in checkerboard 
fashion such that the corners are black and we call lamps on black and white 
squares black and white lamps, respectively. We assign the number 1 to a lamp 
that is on, and the number 0 to a lamp that is off. 
    If we assign to coordinates (0,0) to the lamp in the center, we see that the 
black lamp are exactly the lamps with the coordinates (݅, ݆) where ݅ + ݆ is 
even. 
   Now, we assume that the minimum number is 0 that is, there is a 
configuration where every lamp has an odd number of neighbours that are on, 
and we try to get a contradiction. For every black lamp with coordinates (݅, ݆), ݅ 
and ݆ even, we add the numbers associated to its neighbours, and add all these 
numbers. The parity of this sum ܵ can be determined in the following two 
ways: 
     On the hand, we know that every lamp has an odd number of neighbours 
with value 1, so we simply have to determine the number modulo 2 of lamps 
with ݅ and ݆ even. Since we can group lamps at (݅, ݆) with lamps (−݅,−݆) and 
the lamp in the centeris the only one left, we get that ܵ is odd. 
    On the other hand, every white lamp enters the sum as often as it has 
neighbours with ݅ and ݆ even. But there are exactly two such lamps because 
exactly one of the coordinates of the white lamp is odd and can be modified 
with plus or minus 1 to get a neighbour with two even coordinates. There are 
no problems at the boundary because this process will not change the 
coordinate ±1008 so we will stay inside the square. Therefore, ܵ is even, which 
is clearly a contradiction. 
    So, it is impossible that all lamps have an odd number of neighbours that are 
on. Now, we will provide a concrete arrangement where all lamps except for 
the lamp at the center have an odd number of neighbours that are on. 
      For the black lamps, i.e. ݅ + ݆ even, we choose the values: 

݂(݅, ݆) = ൜0, ,|݅|)ݔ݂ܽ݉݅ |݆|) ≡ (4	݀݉)	0,1
1, ,|݅|)ݔܽ݉	݂݅ |݆|) ≡  (4	݀݉)	2,3

      For the white lamps, i.e. ݅ + ݆ odd, we choose the values: 

݂(݅, ݆) = ൜0, ,|݅|)ݔ݂ܽ݉݅ |݆|) ≡ (4	݀݉)	0,1
1, ,|݅|)ݔܽ݉	݂݅ |݆|) ≡  (4	݀݉)	2,3

(This assignment can be found by replacing 2017 with a small number, say 17, 
starting with a row of zeros, using the assumptions to determine the rest and 
then notice that the zeros and ones for black or white lamps only from frames 
of depth 2 around the center.) 
    It is now easily checked that the condition is satisfied for all non-central 
lamps: 
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   For a white lamp we assume without loss of generality |݅| < |݆| (equality is 
impossible because they have different parity). Then, for the neighbours 
(݅ ± 1, ݆) and (݅, ݆ ± 1), the bigger coordinates are |݆ − 1|, |݆|, |݆| and |݆ + 1| 
and we can check easily that an odd number of them are ≡  .(4	݀݉)	2,3
   For a black lamp with ݆ > 0 or ݆ < 0, we argue analogously. If ݆ = 0, then 
݅ ≠ 0 for a non-central lamp, therefore the maximum is |݅| and we have again 
the values |݅ − 1|, |݅|, |݅|, 
|݅ + 1| to check which contain and odd number of values ≡  .(4	݀݉)	0,1
   Therefore, we have found an arrangement with exactly one lamp with an 
even number of neighbours that are on as desired. 

 
   The images show the discussed optimal arrangement for ݊ = 77. Lamps that 
are on are yellow, lamps that are off are blue. The first image shows all lamps. 
The second image shows the lamps with ݅ + ݆ even and third image shows the 
lamps with ݅ + ݇ odd. 
 
1.42 Let ܖ be a positive integer and  > 1. The square table ࡰ of 
size ܖ consists of  unit cells, each of them is colored by one of three 
colors: black, white, gray. A way to color this table is called “nice” if 
each cell on the diagonal ۱ۯ is colored by gray and each pair of cells 
that symmetric respect to  are colored by the same color, both 
white or both black. One can fill in each gray cell by the number 0, 
each black cell by negative integer and each white cell by positive 
integer. For each positive integer , a way to fill in the table is called 
“ −balanced” if it satisfies all following conditions: 

 All cells of table are filled by the integers belong to the interval 
 .[,−]

 If a row meets a column at a black cell then the sets of positive 
integers on that row and that column are disjoint. Similarly, if a 
row meets a column at a white cell then the sets of negative 
integers on that row and that column are disjoint. 
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1. For  = , find the minimum value of  such that there exists a 
 −balanced way to fill in the table below. 
2. For  = ૠ, find the minimum value of ܓ such that for all nice 
way to color the table, we can fill in the table by  −balanced way. 
 

Vietnam NMO-2017 

Solution:  (1) Let ܽ, ܾ, ܿ be the number fill on the cells at position (1;2),(2;1) 
and (3;4),(4;3) and (4;5),(5;4). It easy to check that all ܽ, ܾ, ܿ must pairwise 
distinct, then ݇ ≥ 3.	We construct the way to fill in the table with ݇ = 3 as 
follows: 

 
Thus the minimum value of ݇ in this case is 3. 
2) First, consider the nice coloring way as chessboard in which the cell (݅, ݆) 
colored by black if and only if ݅ + ݆ is even. 

 
Take two white positions on the table at location (ܽ, ܾ) and (ܿ,݀), 1 ≤
ܽ, ܾ, ܿ,݀ ≤ 2017. 

 If ܽ + ܿ is even then ܾ + ݀ is also even, which implies that ܽ + ݀ and 
ܾ + ܿ are both odd. Then, one of two cells (ܽ, ܾ) and (ܿ,݀) will be 
colored by black since they cannot lie on the diagonal ܥܣ. Thus the 
number filled in white cells are different. 

 If ܽ + ܿ is odd then ܾ + ݀ is also odd, consider cell (݀, ܿ) while filled in 
by the same number as (ܿ,݀) then we can apply the same argument 
as above the conclude that the numbers filled in the white cells are 
different. 
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Hence, all positive numbers on the right upper of the table are pairwise 
distinct. This implies that 

݇ ≥ 2 + 4 + 6 + ⋯+ 2016 = 1008 ∙ 1009 =
2017ଶ − 1

4
 

We shall prove that for all symmetric coloring ways, one can use at most 
ଶଵమ

ସ
  positive integers to fill in the board which satisfy the given conditions 

(the argument is the same for negative integers). 
Consider the graph of 2017 vertices, namely ܣଵ,ܣଶ, … ଶଵܣ, . If row ݅ and 
column ݆ intersect at a white cell which filled in by a number ܽ > 0, then 
we connect ܣܣ and call a as the weight of this edge. This graph is well 
defined since the symmetric properties and from the given condition, we 
can conclude that: two arbitrary vertices that not connected belongs to 
edges of different weights. We have to show that for all graph of ݊ > 1 

vertices, there is a way to assign at most 
మ

ସ
 distinct weights to the edges 

(∗). 
We shall prove (∗) by induction. It is easy to check with ݊ = 1,2,3. 
Consider ݊ ≥ 4 and suppose that the conclusion is true for a graph of 
݊ − 3 vertices, we consider the graph of ݊ vertices. There are two cases: 

     1.If the number of edges in the graph is not more than 
మ

ସ
 then we can 

easily assign a unique weight to an edge which satisfy the condition. If the 

number of edges in the graph is more than 
మ

ସ
 then there are three vertices 

ܣ ܣ,ܣ,  which are pairwise connected. This is true because from Mantel’s 

theorem, we already know that: If a graph has ݊ vertices and more than 
మ

ସ
 

edges then it contains a triangle ( which means three vertices are pairwise 
connected). 
    We assign to ܣܣ,	ܣܣ and ܣܣ  the same weight and assign no more 
than ݊ − 3 distinct weights to the edges connect between one of three 
vertices ܣ ݊  andܣ,ܣ, − 3 other vertices. By applying induction 

hypothesis, we can assign at most (ିଷ)మ

ସ
 distinct weights to the edges 

connect among ݊ − 3 other vertices. Furthermore, we have 

1 + (݊ − 3) +
(݊ − 3)ଶ

4
≤
݊ଶ

4
. 

This implies that (∗) also holds for ݊. 
For ݊ = 2017, we have ቂଶଵ

మ

ସ
ቃ = ଶଵమିଵ

ସ
 and this exactly the minimum 

value of ݇. 
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1.43 At a summer school there are 7 courses. Each participant was a 
student in at least one course, and each course was taken by exactly 
40 students. It is known that for each 2 courses there were at most 9 
students who took them both. Prove that at least 120 students 
participated at this summer school. 

Moldova NMO-2017 

Solution: Let ݊ be the number of students ܥଵ,ܥଶ , … ܥ,  be that 7 courses. 
Suppose that ݊ ≤ 119. And let ܽ be the number of courses that ݅௧ student 
participate. We get that ∑ ܽ

ୀଵ = 7 × 40 = 280. Then consider the number 
of (ܵ,ܥ ܥ ) for which student ܵ participate inܥ, ܥ, , called ܺ. 
 So ܺ = ∑ ൫ଶ ൯


ୀଵ .	But from ݊ ≤ 119 and ∑ ܽ

ୀଵ = 280, we get that 

ܺ ≥ 77 ൬
2
2
൰ + 42 ൬

3
2
൰ = 203. 

But ܺ ≤ 9൫ଶ൯ = 189. Contradiction. So ݊ ≥ 120. 
 
1.44 Let ܘ be an odd prime. Prove that the number  
ቚ൫√+ ൯

ܘ
− ܘାቚ is divisible by ܘ. 

Moldova NMO-2017 

Solution: First, note that the number in question is ܽ = ൫2− √5൯


+
൫2 + √5൯


− 2ାଵ. Now, this is a sequence with ܽ = ܽଵ = 0,ܽଶ = 10 and 

ܽାଷ = 6ܽାଶ − 7ܽାଵ − 2ܽ and hence we easily see that 20 ∣ ܽ for all odd 
݊, in particular 20 ∣ ܽ. 
    Now, checking the case  = 5 separately, it suffices to prove that  ∣ ܽ. 
    But note that ܽ = 2∑ ൫ ଶ൯52ିଶ(ିଵ)/ଶ

ୀଵ  is clearly divisible by  as each of 
the binomial coefficients is. 
     Well, first of all this clearly is an integer as can be seen e.g. by the binomial 
expansion (the terms with √5 cancel). On the other hand, (2 −√5) is a 
negative number of absolute value less than 1. 
     Therefore ൫2−√5൯


 will also be of this form and hence the result. 

 
1.45 Let  ≥  be a positive integer. Each square of an  ×  −board 
is coloured red or blue. We put dominoes on the board, each covering 
two squares of the board. A domino is called ܖ܍ܞ܍ if it lies on two red 
or two blue squares and ܔܝܚܝܗܔܗ܋ if it lies on a red and a blue 
square. Find the largest positive integer ܓ having the following 
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property: regardless of how the red/blue-colouring of the board is 
done, it is always possible to put ܓ non-overlapping dominoes on the 
board that are either all even or all colourful. 

Germany EGMO TST-2015 

Solution: We will prove that ݇ = ቂ
మ

ସ
ቃ is the largest possible integer. Suppose 

that ݊ is even. Then it is possible to cover the board with 
మ

ଶ
 dominoes (without 

considering the colours). Because there are 
మ

ଶ
 dominoes, each of which is 

either colourful or even, there are at least ቂ
మ

ସ
ቃ = మ

ସ
 colourful or at least 

ቂ
మ

ସ
ቃ = మ

ସ
 even dominoes. When ݊ is odd, we can cover the board with 

మିଵ
ଶ

 
dominoes. (Notice that this number is an even integer). Of these dominoes 

either at least 
మିଵ
ସ

= ቂ
మ

ସ
ቃ are colourful, or at least 

మିଵ
ସ

= ቂ
మ

ସ
ቃ are even. This 

proved that it is always possible to put at least ቂ
మ

ସ
ቃ colourful or at least ቂ

మ

ସ
ቃ 

even dominoes on the board. 
    Colour the squares of the board in the colours white and black like the 
squares on a chess board, such that the lowerleft square is white. If ݊ is even, 

there are equally many white as black square, namely 
మ

ଶ
. If ݊ is odd, there is 

one black square less and the number of black squares equals 
మିଵ
ଶ

= ቂ
మ

ଶ
ቃ. In 

both cases this is an even number of squares, as for odd ݊ we have that 
݊ଶ ≡  Now colour half of the black squares red and all the other .(4	݀݉)	1

squares blue. Then there are ቂ
మ

ସ
ቃ red squares, hence we can put at most ቂ

మ

ସ
ቃ 

non-overlapping colourful dominoes on the board as each of these dominoes 
covers one red square. An even domino cannot cover two red squares, because 
there are no pairs of adjacent squares coloured red. Hence, it must cover two 
blue square. One of these blue squares must have been black, hence the 
number of even dominoes is at most the number of black-blue squares and 

that is ቂ
మ

ସ
ቃ. Hence of both the colourful as the even dominoes we can put at 

most ቂ
మ

ସ
ቃ simultaneously on the board. 

   We conclude that the maximum ݇ is indeed ݇ = ቂ
మ

ସ
ቃ . 

 

1.46 For a positive integer ܖ, we define ࡰ as the largest integer that 
is a divisor of ࢇ + ࢇ) + ) + ࢇ) + ) for all positive integers ࢇ. 
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   1. Show that for all positive integers , the number ࡰ is of the form 
 with  ≥  an integer. 
    2. Show that for all integers  ≥  there exists a positive integer  
such that ࡰ = . 

Germany IMO TST-2017   

Solution: 1. Let  be a prime and suppose that  divides ܦ. Then  divides  
((ܽ + 1) + (ܽ + 2) + (ܽ + 3)) − (ܽ + (ܽ + 1) + (ܽ + 2))

= (ܽ + 3) − ܽ 
for all positive integers ܽ. 
     Substituting ܽ =  then it follows that , ∣ ) + 3) −   ,i.e. we have
) + 3) −  ≡ This simply reads 3 .(	݀݉)	0 ≡  so ,(	݀݉)	0 = 3. We 
deduce that ܦ	only contains prime factors equal to 3, and therefore is of the 
form 3 with ݇ ≥ 0 an integer. 
   2. For ݇ = 0 we take ݊ = 2. We have 1ଶ + 2ଶ + 3ଶ = 14 and 2ଶ + 3ଶ +
4ଶ = 29 and these two numbers are coprime, so ܦଶ = 1. Now assume that 
݇ ≥ 1. We show that ܦ = 3 for ݊ = 3ିଵ. 
    We first show that 1 + 2 + 3  for ݊ = 3ିଵ	is divisible by 3 ,	but not by 
3ାଵ. For ݇ = 1 we have ݊ = 1, indeed, we see that 1+2+3=6 is a divisible by 3 
but not by 3ଶ . 
    For ݇ ≥ 2 we have ݊ > ݇, so that   3 is divisible by 3ାଵ. So we are reduced 
to showing that 1 + 2 for ݊ = 3ିଵ is divisible by 3 but not by 3ାଵ. We 
show this by induction on ݇.      
     For ݇ = 2 we have ݊ = 3, so indeed 1+8=9 is   divisible by 9 but not by 27. 
Let ݉ ≥ 2, and suppose we have proved our claim for ݇ = ݉. Let ݊ = 3ିଵ . 
Then 1 + 2 is divisible by 3  but not by 3ାଵ. It suffices to show that 
1 + 2ଷ  is divisible by 3ାଵ, but not by 3ାଶ.   
     Write 1 + 2 = 3ܿ with 3 ∤ ܿ. Then 2 = 3ܿ − 1, so  

1 + 2ଷ = 1 + (3ܿ − 1)ଷ = 3ଷܿଷ − 3 ∙ 3ଶܿଶ + 3 ∙ 3ܿ 
   Modulo 3ାଶ, this is congruent to 3ାଵܿ, and since 3 ∤ ܿ, it follows that this 
is divisible by 3ାଵ, but not by 3ାଶ, as desired. This completes our inductive 
argument. 
    Next, we show that for ݊ = 3ିଵ, we have that (ܽ + 3) − ܽ is divisible by 
3 for all positive integers ܽ. Again, we prove this by induction on ݇. For ݇ = 1, 
we have ݊ = 1, so indeed we see that (ܽ + 3) − ܽ = 3 is divisible by 3 for all 
positive integers ܽ.  
     Now suppose that ݉ ≥ 1, and suppose that we proved our claim for 
݇ = ݉.	     Let ݊ = 3ିଵ. Then (ܽ + 3) − ܽ is divisible by 3  for all positive 
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integers ܽ, so we can write (ܽ + 3) = ܽ + 3ܿ for some integer ܿ. Taking 
third powers of both sides then yields 

(ܽ + 3)ଷ = ܽଷ + 3ܽଶ ∙ 3ܿ + 3ܽ ∙ 3ଶܿଶ + 3ଷܿଷ ,  	ݏ
(ܽ + 3)ଷ − ܽଷ = 3ܽଶ ∙ 3ܿ + 3ܽ ∙ 3ଶܿଶ + 3ଷܿଷ, 

which is divisible by 3ାଵ. This completes our inductive argument. 
      We have now shown for ݊ = 3ିଵ that 3 ∣ 1 + 2 + 3  and 3 ∣
(ܽ + 3) − ܽ for all positive integers ܽ, from which we, by induction on ܽ, 
immediately deduce that  
3 ∣ ܽ + (ܽ + 1) + (ܽ + 2) for all positive integers ܽ. Therefore 3 ∣  .ܦ
      As 3ାଵ ∤ 1 + 2 + 3 , we also have 3ାଵ ∤ ܦ . Thereforeܦ = 3 , as 
desired. 
 
1.47 Given are positive integers ܚ and ܓ and an infinite sequence of 
positive integers ࢇ ≤ ࢇ ≤ ⋯ such that ࢘

࢘ࢇ
=  + . Prove that there 

is a ܜ satisfying ࢚
࢚ࢇ

=  .
Germany EGMO TST-2015 

Solution: We will prove this by contradiction. Suppose that such a ݐ does not 
exist. If ܽ = 1, then 

ೖ
= ݇ would hold, contradicting our assumption. Hence, 

ܽ ≥ 2. We will now prove by induction to ݅ that ܽ ≥ ݅ + 1. We just proved 
the base case. Now suppose that for certain ݅ ≥ 1 we have that ܽ ≥ ݅ + 1. 
Then we also have that ܽ(ାଵ) ≥ ݅ + 1. If ܽ(ାଵ) ≥ ݅ + 1, then (ାଵ)

(శభ)ೖ
= ݇, 

which is a contradiction. Hence, ܽ(ାଵ) ≥ ݅ + 2. This finishes the induction. 
Now take ݅ = ܽ we have ܽ݇ ≥ ܽ + 1. Moreover, because ݎ = ܽ(݇ + 1) we 
have ܽ = ܽೝ(ାଵ) ≥ ܽೝ ≥ ܽ + 1, which is a contradiction. 
 

1.48 In a country between every two cities there is a direct bus or a 
direct train line (all lines are two-way and they don’t pass through any 
other city). Prove that all cities in that country can be arranged in two 
disjoint sets so that all cities in one set can be visited using only train 
so that no city is visited twice, and all cities in the other set can be 
visited using only bus so that no city is visited twice. 

Croatian NMO-2015 

Solution: Let ܩ be the set of all cities in the country. We call a pair (ܣ,ܼ), 
where ܣ and ܼ are disjoint subsets of ܩ	݀݃ if all cities in the set ܣ can be 
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visited using only bus such that no city is visited twice and all cities in the set ܼ 
can be visited using only train such that no city is visited twice. 
     Let (ܣ,ܼ) be a good pair such that the set ܣ ∪ ܼ has the maximal number of 
elements. If we prove ܣ ∪ ܼ =  .the statement of the problem holds ,ܩ
    Let us assume the opposite, i.e. there is a city ݃ which isn’t from ܣ or ܼ. 
Without loss of generality we can assume that ܣ and ܼ are non-empty, 
because otherwise we can transfer any city from a non-empty set to an empty 
one.    Let ݊ be the number of cities in the set ܣ, and ݉ the number of cities in 
the set ܼ. Let us arrange the cities from ܣ in the series ܽଵ, … ,ܽ such that 
every two consecutive cities in that series are connected by a direct bus line. 
Also, let us arrange the cities from ܼ in the series ݖଵ, … , ݖ  such that every two 
consecutive cities in that series are connected by a direct train line. 
    Since we assume that the pair (ܣ, ܼ) is maximal, the cities ݃ and ܽଵ have to 
be connected by train (otherwise the pair (ܣ ∪ {݃},ܼ) would be a good pair 
whose union would have more elements than ܣ ∪ ܼ), and ݃ and ݖଵ have to be 
connected by bus (otherwise the pair (ܣ,ܼ ∪ {݃}) would be a good pair whose 
union would have more elements than ܣ ∪ ܼ).    The cities ܽଵ and ݖଵ have to be 
connected by bus or by train. 
 

 
 
    If ܽଵ and ݖଵ are connected by bus, let us put ܣᇱ = ,ଵ,݃,ܽଵݖ} … ,ܽ} and 
ܼᇱ = ,ଶݖ} … ,  .{ݖ
Then (ܣᇱ,ܼᇱ) is a good pair and the number of elements of ܣ′ ∪ ܼ′ is greater 
than the number of elements of ܣ ∪ ܼ, which contradicts the assumption. 
    If ܽଵ and ݖଵ are connected by train, let us put ܣᇱᇱ = {ܽଶ, … ,ܽ} and 
ܼᇱᇱ = {ܽଵ,݃, ,ଵݖ … ,  is a good pair and the number of (ᇱᇱ,ܼᇱᇱܣ) }. Thenݖ
elements of ܣ′′ ∪ ܼ′′ is greater than the number of elements of ܣ ∪ ܼ, which 
contradicts the assumption. 
    Since all cases lead to contradiction, we conclude that the assumption was 
wrong and that every city is either in the set ܣ or in the set Z.  
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1.49 The first  positive integers are written on a board ( ≥ ). Ante 
repeats the following procedure: first he chooses two numbers on the 
board, and then he increases them both by the same arbitrary positive 
integer.Determine all positive integers  such that Ante can, by 
repeating this procedure, achieve that all numbers on the board are 
equal. 

Croatian NMO-2015 

Solution: Assume ݊ = 4݇. Then Ante can achieve that all numbers on the 
board are equal in the following way: he will increase by 1 the numbers and 3,5 
and 7, … ,4݇ − 3 and 4݇ − 1. By doing that, he gets that the numbers on the 
board are all even numbers smaller than or equal to ݊, and each is written 
twice. Finalli, he increases 2 and 2 by ݊ − 2, 4 and 4 by ݊ − 4, … ,݊ − 2 and 
݊ − 2 by 2, and he gets that all numbers on the board are equal to ݊. 
    Assume ݊ = 2݇ + 1. Then Annnttte can schieve that all numbers on the 
board are equal in the following way: he will increase by 1 the numbers 1 and 
݊, … ,݊ − 2 and ݊. 
    By doing that, he gets that the numbers on the board are all even numbers 
smaller than or equal to ݊, each written twice, and the number ଷିଵ

ଶ
. Finally, 

he increases 2 and 2 by ଷିହ
ଶ

, 4 and 4 by ଷିଽ
ଶ

, … ,݊ − 1 and ݊ − 1 by ାଵ
ଶ

. Now 

all numbers on the board are equal to ଷିଵ
ଶ

. 
    Assume ݊ = 4݇ + 2. Then Ante cannot achieve that all numbers are equal. 
The sum of all numbers on the board is initialy odd, because 

1 + 2 + ⋯+ ݊ =
݊(݊ + 1)

2
= (2݇ + 1)(4݇ + 3) 

    Since there is an even number of numbers on the board, if they were equal 
their sum would be an even number. On the other hand, in each step the sum 
of numbers on the board is increased by an even, so the sum will never be 
even.  Therefore, Ante can achieve that all numbers are equal if and only if ݊ is 
not of the form 4݇ + 2,݇ ∈ ℕ. 
 

1.50 Prove that for every non-negative integer  there exist integers 
,࢟,࢞ (ࢠ,࢟,࢞)܌܋ with ࢠ =  such that  ࢞ + ࢟ + ࢠ =  . 

Czech-Polish-Slovak Match-2016 

Solution: We will use the following algebraic formula: 
ଶݔ) + ଶݕ + ଶ)ଶݖ = ଶݔ) + ଶݕ − ଶ)ଶݖ + ଶ(ݖݔ2) +  .ଶ(ݖݕ2)
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    This means that if a positive integer can be represented as a sum of 3 
squares, then so can its square. Consequantly, if we put 

,ݕ,ݔ) (ݖ = (1,1,1) 
,ାଵݕ,ାଵݔ) (ାଵݖ = ଶݔ) + ଶݕ − ଶݖ , ,ݖݔ2  ,(ݖݕ2

then by a trivial induction we obtain that ݔଶ + ଶݕ + ଶݖ = 3ଶ .	 
     It remains to show that ݃ܿ݀(ݔ, (ݖ,ݕ = 1 for all ݊ and we proceed by 
induction.  
     Suppose ݃ܿ݀(ݔ,ݕ, (ݖ = 1, but ݔାଵ,ݕାଵ and ݖାଵ have some common 
prime divisor . Observe that since 3ଶ  is odd, but 2ݔݖ and 2ݕݖ are even, 
we have that ݔଶ + ଶݕ −  ଶ is odd, soݖ ≠ 2. Hence  ∣   andݖݔ ∣  .ݖݕ
Then either  ∣  , orݖ ∣   andݔ ∣  . In the latter case we could infer fromݕ
 ∣ ଶݔ + ଶݕ −  ଶ that in fact alsoݖ ∣  , which contradicts the assumptionݖ
that ݃ܿ݀(ݔ,ݕ, (ݖ = 1. Hence we are left with the first case:  ∣  .ݖ
    Since  ∣ ଶݔ + ଶݕ −  ଶ andݖ ∣  , we also have thatݖ ∣ ଶݔ + ଶݕ + ଶݖ =
3ଶ . Hence in fact  = 3. But the only quadratic residues modulo 3 are 0 and 1, 
so the two possibilities for a sum of three squares to be divisible by 3 is that 
either all or none of them is divisible by 3. The former case is excluded by the 
assumption that ݃ܿ݀(ݕ,ݔ, (ݖ = 1 and the latter by  ∣ ݖ . 
 
1.51 Given are  people and it is known that their heights are all 
different. They have to stand in two rows, each with ܖ people. How 
many different positions are there, if the front row person is always 
shorter than the back row person? 

Mongolian NMO-2010 

Solution: In the first seats of the rows, we can choose 2 people ଶ(ଶିଵ)
ଶ

 
different ways. Then in the second seats of the rows, we can choose 2 people 
(ଶିଶ)(ଶିଷ)

ଶ
 different ways. Continuing this, we have  

2݊(2݊ − 1)
2

∙
(2݊ − 2)(2݊ − 3)

2
∙ … ∙

2 ∙ 1
2

=
(2݊)!

2
 

 
1.52 A sequence of digits is written on the board according to the 
following rule: each time write the last digit of the product ܊܉, where 
 are the last two digits written. For example, if initial digits are ܊ and ܉
1;8, then the sequence is continued as follows: 1;8;8;4;... 

Find the ૠࢎ࢚ digit of the sequence starting with 3;4 

Ukrainian NMO-2017 
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Solution: Write out the sequence until it starts to repeat; it will happen when 
a pair of consecutive digits repeats. Since there is a finite number of such 
pairs, eventually it must happen. 

3;4;2;8;6;8;8;4;2;... 

We see that a group of six digits 4;2;8;6;8;8 repeats periodically. Moreover, 
the first digit 3 is outside of the period. Hence, the 4 digit is at positions 
2,8,14,...,2012. So the 2017௧  digit is 8. 

1.53 Find all the positive integers ܖ such that exist  sets ,, …  ,
such that each of them has exactly 5 elements, any two of these ܖ sets 
have exactly one common element and union of these sets consists ܖ 
elements. 

U.Batzorig Mongolian NMO-2010 

Solution: Let us assume that the union of the sets consist of integers from 1 to 
݊. Let ܵ  denote the number of sets that ݅ belongs to. Then the total number of 
elements of ݊ sets is  

5݊ = ଵܵ + ܵଶ + ⋯+ ܵ; 		(∗) 

Let us assume ଵܵ > 5 and 1 ∈ ,ଵܣ 1 ∈ ,ଶܣ 1 ∈ ,ଷܣ 1 ∈ ,ସܣ 1 ∈ ,ହܣ 1 ∈  . Ifܣ
1 ∈ ܣ , ݅ = 1,݊തതതതത then the remaining 4݊ elements have to be different. Because 
หܣ ∩ หܣ = 1, ݅ ≠ ݆ holds. That means, we have 4݊ + 1 different elements. It 
contradicts to |ܣଵ ∪ ଶܣ ∪ …∪ |ܣ = ݊. 

Thus we can assume that 1 ∉  .ܣ

Since หܣ ∩ หܣ = 1,1 ≤ ݅, ݆ ≤ 6, the intersections of ܣ with ܣଵ,ܣଶ , …   areܣ,
all different. Hence |ܣ| ≥ 6. But it contradicts to |ܣ| = 5. This leads to 
ଵܵ ≤ 5. Analogously, ܵ ≤ 5 for ݇ = 1,݊തതതതത. 

Considering (∗), ܵ = 5 holds for ݅ = 1,݊തതതതത. Hence the number of sets is 
݊ = 4 ∙ 5 + 1 = 21.  

The construction is:  ܣଵ = {1,2,3,4,5}; ଶܣ	 = {1,6,7,8,9} 

ଷܣ = {1,10,11,12,13}; ସܣ	 = {1,14,15,16,17} 

ହܣ = ܣ	;{1,18,19,20,20} = {2,6,10,14,18} 
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ܣ = {2,7,11,15,19}; ଼ܣ	 = {2,8,12,16,20} 

ଽܣ = {2,9,13,17,12}; ଵܣ	 = {3,6,7,8,9} 

ଵଵܣ = {3,10,11,12,13}; ଵଶܣ	 = {3,14,15,16,17} 

ଵଷܣ = ଵସܣ	;{3,18,19,20,21} = {4,6,10,14,18} 

ଵହܣ = {4,7,11,15,19}; ଵܣ	 = {4,8,12,16,20} 

ଵܣ = {4,9,13,17,21}; ଵ଼ܣ	 = {5,6,7,8,9} 

ଵଽܣ = {5,10,11,12,13}; ଶܣ	 = {5,14,15,16,17} 

ଶଵܣ = {5,18,19,20,21} 

1.54 In a company of friends each one likes either math or computer 
science. Those who like math have an average age of 15, and those 
who like computer science have an average age of 25. One day, Andriy 
switched from computer science math. As a consequence, an average 
age of each group increased by 1. Find the number of friends in the 
company and give an example that demonstrates that such situation is 
possible. 

Ukrainian NMO-2017  

Solution: Denote by ݊ and ݉ the number of people who like math and 
computer science, respectively.Then the total age of all friends can be counted 
in two ways: ܰ = 15݊ + 25݉ = 16(݉ + 1) + 26(݉− 1) ⇒ ݊ + ݉ = 10. 

This is indeed possible: let there be 4 mathematicians aged 15, one computer 
scientist aged 20, and 5 more computer scientist aged 26. Initially, average age 
was equal to 15 for mathematicians, and ଵ


(20 + 26 ∙ 5) = 25 for computer 

scientist. If Andriy is 20 years old, then the average age become 26 for 
computer scientists, and ଵ

ହ
(20 + 15 ∙ 4) = 16 for mathematicians. 

1.55 8 small circles are arranged in a circle. Is it possible to put the 
numbers 1;2;...;8 in these circles so that the sum of any two 
neighboring numbers is not divisible by 3,5 and 7? 

Ukrainian NMO-2017 
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Solution: Let us write out the pairs of numbers that can be neighboring: 

(1; 3), (1,7). (2,6), (3,5), (3,8), (4,7), (5,6), (5,8), (6,7). 

We see that 2 can only have 6 as a neighbour. But if the necessary 
arrangement existed, 2 must have had two different neighbours. 

1.56 In a product of 3 positive integers each multiple was decreased 
by 3. Could it happen that the product increases by 2016 after this 
change? 

N.Agakhanov-Russian-Regional MO-2017 

Solution: Answer, Yes.  An example is 1 ∙ 1 ∙ 676. 

1.57 Initially, Brazil thinks of eight cells on a chessboard, no two of 
which are in the same row or in the same column. Then Pete makes a 
series of guesses. By a guess, he places onto the chessboard 8 rooks 
none of which can take another one, and then Brazil indicates those of 
Pere’s rooks which stand on positions he thinks of. If Brazil indicates 
an even number of rooks, Pete wins. Otherwise, the rooks are 
removed from the board, and then Pete makes the next guess. Find 
the least number of guesses at which Pete can win for sure. 

I.Bogdanov-Regional MO Russian-2017 

Solution: Answer. 2 guesses.If Pete did not win on the first move (which is 
possible), then on the second he swaps the rows of just two rooks; one 
standing on Brazil’s cell, and one standing on such cell. 

1.58 In a product of 5 positive integers each multiple was decreased 
by 3. Could it happen that the product becomes exactly 15 times 
larger than the initial one? 

N.Agakhanov, I.Bogdanov-Regional MO Russian-2017 

Solution:  Answer. Yes. An example is 1 ∙ 1 ∙ 1 ∙ 1 ∙ 48 
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1.59 In a product of 7 positive integers each multiple was decreased 
by 3. Could it happen thet the product becomes exactly 13 times 
larger that the initial one? 

N.Agakhanov, I.Bogdanov-Regional MO-Russian-2017 

Solution: Answer. Yes. An example is 1 ∙ 1 ∙ 1 ∙ 1 ∙ 1 ∙ 2 ∙ 16 = 32 (there are 
other examples) 

1.60 Some pairs of cities in a country are connected with one-
directional direct flights (between any two cities, there is at most one 
flight). We say that a city  is ܍ܔ܊ܑܛܛ܍܋܋܉ for a city		if one may reach 
the city  starting at  (perhaps with zero flights or more than one 
flight in a chain). Assume that for any two cities ࡼ and ࡽ there exists a 
city ࡾ for which each of ࡼ and ࡽ is accessible. Prove that there exists a 
city for which every city is accessible. 

V.Dolnikov-Russia NMO-2017 

Solution: Chose the city with a maximal number of cities accessible from it. 

1.61 100 dwarves whose weights are 1,2,...,100 lb came to the left 
bank of a river. They cannot swim, but they have a boat which can 
take up to 100 lb. When a boat crosses the river, one of the dwarves  
in it is an oarsmen; while performing one crossing, the oarsman 
remains the same. Due to the steam, it is difficult to oar from the right 
bank to the left one, so each dwarf can oar in this direction at most 
once. Can the whole company of dwarves reach the right bank? 

A.Shapovalov, S.Usov-Russia NMO-2017 

Solution:  Answer. No. Call the dwarves weighing at least 50 kg heavy; 
assume they oared backwards ݀ times. Then there were at least 51 + ݀ their 
forward passages, and hence at least 50 backward passages with no heavy 
dwarves oaring. But who could oar during these 50 passages? Answer. Yes. 
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1.62 Is it possible to compose two integer numbers using each of the 
ten digits 0,1,...,9 exactly once, such that one of them is the square of 
the other?  0 cannot be the first digit in either number. 

Ukrainian NMO-2015 

Solution: If a number has 3 digits, its square can contain no more than 6 
digits, which gives 9 in total. If our number has 4 digits or more, its square has 
at least 7, therefore, we must use at least 11 digits. Therefore, no such number 
exist. 

1.63 A committee has 4 subcommittees, each controlled by 3 leaders 
from the committee. For effective coordination, each two 
subcommittees must have exactly one leader in common. What is the 
least possible number of people in the committee: 

Ukrainian NMO-2015 

Solution: Answer. 6. If we consider two subcommittees, they have exactly one 
leader in common, therefore, together they have exactly 5 members. Hence 
there are at least 5 people in the committee. Denote them by ܣ = {1,2,3,4,5}. 
However it’s impossible to choose leaders for another subcommittee out of 
them. Therefore, the committee must have at least 6 members. Here’s an 
example of four subcommittees and their leaders: 

ܣ = {1,2,3,4,5,6} → {1,2,3}; {3,4,5}; {1,5,6}; {2,4,6} 

1.64 Find all integers  that have more than 

 divisors. 

Bogdan Rublyov-Ukrainian NMO-2017 

Solution: Answer: ݊ ∈ {1,2,3,4,6}.Clearly a number cannot have divisors 
greater 

ଶ
, besides ݊ itself. Therefore, in order to have more than 

ଶ
 divisors it 

must be divisible by all numbers from 1 to 
ଶ

 and by ݊. Denote by ݉ the integer 

number which equals either 
ଶ

 or ିଵ
ଶ

. Then if ݊ ≥ 10, either ݉ or ݉− 1 is 
coprime with 3. 
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Hence, ݊ ≥ 3݉, because it must be divisible by both 3 and ݉. However, in this 
case  ݊ ≥ 3 ∙ ቀିଵ

ଶ
− 1ቁ, or 2݊ ≥ 3݊ − 9, which contradicts the assumption 

that ݊ ≥ 10. All numbers ݊ < 10 can be checked by hand. 

1.65 The target for bow shooting looks as in shown in the figure. What 
is the minimum amount of shots that a sportsman has to fire to score 
exactly 55 points? 

 

Ukrainian NMO-2015 

Solution: Clearly, for the minimum amount of shots all hits, except to be no 
more than 1 time. Otherwise, instead of such 2 hits, for example into 4, it is 
enough to hit into 8 once. In such a way, we chose the maximum possible 
amount of hits into 16, and then into every other point no more than 1 time: 

55 = 16 + 16 + 4 + 2 + 1 

so the minimum is 6 shots.  

1.66 The target for bow shooting looks as in the figure. What is the 
minimum amount of shots that a spotsman has to fire to score exactly 
105 points? 

 

Ukrainian NMO-2015 
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Solution: Answer: 6. Suppose there is at least one hit in 15. Then  

105 = 7݊ + 15݉ + 28݇, 

since all the item, except 15݉, are divisible by 7, the sum is divisible by, than 
15݉ have to be divisible by 7, that is why ݉ ≥ 7. But if there are no hits in 15, 
it is enough to have exactly 6 hits: 

105 = 28 ∙ 3 + 7 ∙ 3, 

and obviously it is the minimum amount of hits. 

1.67 For which natural number in notation of number ܖ! =  ∙  ∙ … ∙  ܖ
are exactly 2 digits used? 

Ukrainian NMO-2015 

Solution: Answer: ݊ = 4.	In case of ݊ ≥ 5 the number ݊! ends with 0, so it can 
have one more digit. Mark it as ܽ, then 

݊! = ܽ…ܽ0 … 0ܽ…ܽ0 … 0 …ܽ0 … 0തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത = ܽ ∙ 1 … 10 … 01 … 10 … 0 … 1 … 10 … 0തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

If you cross out zeros from the last factor, you will get an odd. So the amount 
of factors 2 in decomposition ݊! into prime numbers cannot be more than 
amount of factors 5 plus 3. Every pair 2 ∙ 5 gives new 0 at the end, and 
superfluous 2 can from only digit ܽ, and among digits 8 is divisible by the 
biggest power of 2. Even for ݊ = 8,݊! = 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 and the condition 
is not true. Since the factor 2 occurs in every second number, and 5 occurs in 
every fifth, then the appropriate relation can be accomplished only if ݊ ≤ 7. By 
a simple testing we find out that the condition is satisfied only by 4! = 24. 

1.68 In table  ×  the columns are renumbered from left to right by 
Fig.1 numbers ,, … ,Every cell is filled by , ., …  in such way ,
that every row and every column contains all numbers ,, …  In .,
every column cells are painted in grey if the number in it is bigger than 
the number of this column. In figure 1  the example of such painting 
for some arrangement of numbers for  =  is shown. Is it possible 
that the amount of grey cells in every row is equal, if 

	(ࢇ = 																																																									(࢈	 =  
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             (Fig.1) 

Ukrainian NMO-2015 

Solution: Answer: a) yes; b) no.a) For ݊ = 5 it is easy to show an example 
(Fig.2) b) For ݊ = 10 first row contains exactly 9 grey cells, second contains 
exactly 8, … , 9௧ contains exactly 1 cell, 10th does not contain any.  

Consequently, there are 9 + 8 + ⋯+ 1 = 45 grey cells, and this amount is not 
divisible by 10. Therefore every row cannot contain equal amount of grey cells. 

5 4 3 2 1 

1 5 4 3 2 

2 1 5 4 2 

3 2 1 5 4 

4 3 2 1 5 

(Fig.2) 

1.69 Find all integer , such that: 

) − )(− )(− )( − ૠ) =  

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Answer: ݊ = 2015.	If integer number ݊ satisfies the given condition, 
then 4 can be presented as product of four pairwise distinct integer. Since the 

3 1 1 

1 2 3 

2 3 1 
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integers divisors of this number are only ±1, ±2	and ±4, we have that sought-
for divisors are ±1 and ±2. Indeed, if the absolute value of one of divisors is 
equal to four then others are not less that 1 by absolute value, a contradiction. 
Since ݊ − 2013 is the biggest factor, he should be equal to 2. Also we see that 
݊ = 2015 satisfies the condition of the problem. 

1.70 Find all three prime numbers (,,  that satisfy the equality (࢘


 − 

+
࢘

+ 
=
 + ࢘ + 


 

Vyacheslav Yasinkyi=Ukrainian NMO-2015 

Solution: Answer:  = ݍ = 2, ݎ = 3 or  = ݍ = 3, ݎ = 2.	Let’s rewrite the 
given equality as follows: 

ݍ
 − 1

−
ݍ


=
ݎ

−

ݎ
 + 1

+
1

⇔

ݍ
) − 1) =

ݎ
) + 1) ⇔

ݍ
 − 1

=
ݎ

 + 1
+ 1 

ݍ =
) − ݎ(1
 + 1

+  − 1 ⇔ ݍ =  + ݎ − 1 −
ݎ2

 + 1
; 			(1) 

Since , ,ݍ are prime, then the number ଶ ݎ
ାଵ

 is a positive integer. The number 

,has only four divides: 1,2 ݎ2  Since .ݎand 2 ݎ + 1 ≥ 3, then two cases are 
possible:  + 1 =  or ݎ + 1 =  .ݎ2

   1) Suppose that  + 1 =  which means ݎ = ݎ − ,1 + 1 ≥ 3, so the only 
pair of consecutive prime numbers is 2 and 3, and thus,  = 2 and ݎ = 3. Then 
from (1) we find that ݍ = 2. After checking we make certain that  = ݍ =
2, ݎ = 3 is an answer. 

     2) Suppose that  + 1 =  which means ݎ2 = ݎ2 − 1. Then from (1) we find 
that ݍ = ݎ3 − 3 ⋮ 3 and since ݍ is prime then ݍ = 3. Further, consistently find 
that ݎ = 2, ݎ = 3.	Checking shows that  = ݍ = 3, ݎ = 2 is an answer as well. 

1.71 Determine all prime numbers  < ݍ <   so that ݎ

 = ࢘) − ࢘)( − )( − ( +  and  =  +  equal the same 
prime number. 

Yasinky Vyacheslav-Ukrainian NMO-2015 
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Solution: Answer:  = 2, ݍ = 5, ݎ = 7.	Let , ,ݍ  be the prime numbers that ݎ
satisfy the conditions of the problem. If  > 2 the all , ,ݍ  are odd thus the ݎ
number ܣ = 3 + ܤ  is even and the number ݍ5 = ݎ) − ݎ)( − ݍ)(ݍ − ( + 1 
is odd that contradicts the conditions  of the problem. Therefore,  = 2, thus:  
ݎ) − ݎ)( − ݍ)(ݍ − ( + 1 = 6 +  .ݍ5

 < ݍ < ݎ that means ,ݎ − 2 > ݍ − 2 and ݎ − ݍ ≥ 2. Therefore, 

 6 + ݍ5 > ݍ)2 − 2)ଶ + 1. After solving tha last inequality, we will have that 
ݍ < 7. Prime numbers that satisfy this inequality are ݍ = 3 and ݍ = 5. 

If ݍ = 3, then ܤ = 3 + ݍ5 = 21 is not prime. 

If ݍ = 5, then ܤ = 3 + ݍ5 = 31 is prime, that implies ܣ = ݎ) − ݎ)(2 − 5) ∙
3 + 1 = 31, and ݎଶ − ݎ7 = 0, that means ݎ = 7. 

1.72 a) Determine whether there exist positive integer numbers 
,ࢇ,ࢇ …   such that: any two of them are co-prime andࢇ,
ࢇࢇ ࢇ… −  is a product of two consequent odd numbers? 

    b) Determine whether there exist positive integer numbers 
,ࢇ,ࢇ … ࢇ, , such that: any two of them are co-prime and 
ࢇࢇ ࢇ… −  is a product of two consequent even numbers? 

Yasinky Vyacheslav-Ukrainian NMO-2015 

Solution: Answer: a),b) Yes, such numbers exists. 

      a) Let ܽଵ = ଵଶ,ܽଶ = ,ଶଶ … ,ܽଶଵହ = ଶଵହଶ , where ଵ = ,ଶ,2 …  ଶଵହ are,
first 2015 prime numbers. It is clear that every two of this numbers are co-
prime and  ܽଵܽଶ …ܽଶଵହ − 1 = ଶଵ) ଶଵହ… − ଶଵ)(1 ଶଵହ… + 1) is a 
product of two consequent odd numbers. 

     b) Let ܽଵ = ଵଶ,ܽଶ = ,ଶଶ … ,ܽଶଵହ = ଶଵହଶ , where ଵ = ଶ,3 = 5, …  ଶଵହ,
are first 2015 odd prime numbers. It is clear that every two of this numbers are 
co-prime and  ܽଵܽଶ …ܽଶଵହ − 1 = ଶଵ) ଶଵହ… − ଶଵ)(1 ଶଵହ… + 1) is a 
product of two consequent even numbers. 

1.73  Some positive integers are writen on cards, at least two different 
numbers on each card. The same number may be written on several 
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cards. Two cards are called ܜܖ܍܋܉ܒ܌܉ if the maximum number on one 
of them is equal to the minimum number on the other. 

Prove that if there are no adjacent cards then all written numbers can 
be divided into two sets so that any card contains at leastone number 
from every set.  

 S.Chernov-Belarus NMO-2017 

Solution: We construct two required groups ܩଵ and ܩଶ as follows: we choose 
the smallest number on on the each card and put it in the group ܩଵ. Therefore, 
every card contains at least one number from ܩଵ. All other numbers we put in 
the group ܩଶ. Since there are no adjacent cards, the largest number on any 
card does not coincide with the smallest numbers on other cards, so this 
largest number belongs to ܩଶ. Therefore, every card contains at least one 
number from ܩଶ. 

1.74 a) Given the ten digits from 0 to 9, prove that three numbers ۰,ۯ 
and ۱ can be formed by combining these digits, provided that each 
digit is used exactly once and  +  =  Notice that 0 may not be the .
first digit of any of the numbers. 

   b) Find al possible values of the sum of the digits of . 

V.Kaskevich NMO-2017 

Solution: Answer: b) 9 or 18.  a) For example 765 + 324 = 1089. 

   b) Since any integer ܺ is congruent modulo 9 to the sum of its digits, we 
have: ܣ + ܤ + ܥ ≡ (ܣ)ܵ + (ܤ)ܵ + (ܥ)ܵ = 

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 ≡  .(9	݀݉)0

    By condition, we have ܣ + ܤ = ܥso 2 ,ܥ ≡  where it follows that (9	݀݉)0
ܥ ≡ (ܥ)ܵ ,and, therefore (9	݀݉)0 ≡  i.e. the sum of the digits of ,(9	݀݉)0
(ܥ)ܵ is divisible by 9. Note that ܥ = ܣ)ܵ + (ܤ ≤ (ܣ)ܵ +  Indeed, if the .(ܤ)ܵ
sum of the digits of ܣ and ܤ does not exceed 9 in all number position, then 
when we add ܣ and ܤ there is not ‘carry’ from any number position, so, 
ܣ)ܵ + (ܤ = (ܣ)ܵ +  Otherwise, since the greatest possible carry is 1, if    	.(ܤ)ܵ
there is a carry from some number position, then the sum ܵ(ܣ +  decreases (ܤ
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by 9. Thus, ܵ(ܥ) ≤ (ܣ)ܵ + (ܣ)ܵ  and (ܤ)ܵ + (ܤ)ܵ + (ܥ)ܵ = 45. Therefore, 
(ܥ)ܵ ≤ 45: 2 = 22,5. Exactly two numbers 9 and 18 are smaller than 22,5 and 
are divisible by 9. The following examples shows that ܵ(ܥ) can admit both of 
these two values: 473 + 589 = 1062 or 4987 + 26 = 5013 ( the sum of the 
digits is equal to 9); 765 + 324 = 1089 (the sum of the digits is equal to 18). 

1.75 Let  is a prime number and let  +  is the sum of the 

squares of six consecutive positive integers. Prove that  ∣  − ૠ. 

Macedonian NMO-2017 

Solution: From the conditions of the problem, we have that 

3 + 10 = (݊ − 2)ଶ + (݊ − 1)ଶ + ݊ଶ + (݊ + 1)ଶ + (݊ + 2)ଶ + (݊ + 3)ଶ = 

= 6݊ଶ + 6݊ + 19, 

so, we have that 3 = 6݊ଶ + 6݊ + 9, and   

  = 2݊ଶ + 2݊ + 3 = 2݊(݊ + 1) + 3. 

If one of the numbers ݊ or ݊ + 1 is divisible with 3, then, we have a 
contradiction with the condition that  is a prime number. So, ݊ = 3݇ + 1. 
Then:  = 2(3݇ + 1)(3݇ + 1 + 1) + 3 = 2(3݇ + 1)(3݇ + 2) + 3 =
2(9݇ଶ + 9݇ + 2) + 3 = 18݇(݇ + 1) + 7.	Since ݇(݇ + 1) is an even number, 
we have that 36 ∣  − 7. 

1.76 A local supermarket is responsable for the distribution of 100 
supply boxes. Each box is ought to contain 10 kilograms of rice and 30 
eggs. It is known that a total of 1000 kilograms of rice and 3000 eggs 
are in these boxes, but in some of them the amount of either item is 
more or less than yhe amount required. In each step, supermarket 
workers can choose two arbitrary boxes and transfer any amount of 
rice or any number of eggs between them. At least how many steps 
are required so that, starting from any arbitrary initial condition, after 
these steps the amount of rice and the number of eggs in all these 
boxes is equal? 

 Iran NMO-2015 
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Solution: The answer is 99. First consider the initial condition that all of eggs 
are in just one of boxes. In each step, we can transfer eggs to at most one new 
box and so we need at least 99 steps. We claim that 99 steps is always enough. 
For this end, we call a box containing exactly 30 eggs and 10 kilograms of rive 
a ݃݀	ݔܾ, and a box which is not good a ܾܽ݀	ܾݔ! 

In each step, consider one of bad boxes containing the most number of eggs 
and one of bad boxes containing the most amount rice. If these two boxes 
were the same, consider another arbitrary bad box (note that if all other boxes 
were good, this box also must be good and there is nothing to prove). 
Evidently, we have at least 30 number of eggs and 10 kilograms of rice in these 
two boxes. So by transferring eggs and rice between them, we can make one of 
them a good box. Therefore, after 99 steps we have at least 99 good boxes and 
so the last box is also good and we are done. 

1.77 A positive integer is called ܍܋ܑܖ if it is equal to the sum of the 
squares of its three distinct divisors. (A divisor may be equal to 1 or to 
the number itself). 

   a) Prove that any nice number is divisible by 3. 

   b) Are there infinitely many nice numbers? 

I.Voronovich-Belarusian  NMO-2017 

Solution: Answer: b) there are an infinite number of nice numbers. 

       a) Let ܰ be a nice number, i.e. ܰ = ݀ଵଶ + ݀ଶଶ + ݀ଷଶ, where ݀ଵ,݀ଶ,݀ଷ are 
distinct divisors of ܰ. If some divisor of ܰ is divisible by 3, then ܰ is divisible by 
3.  So, we suppose that ݀ଵ,݀ଶ,݀ଷ are not divisible by 3. Then their squares are 
congruent to 1 modulo 3, i. e. ݀ଶ = 3݇ + 1,݇ ∈ ℕ, ݅ = 1,2,3. Therefore 

ܰ = ݀ଵଶ + ݀ଶଶ + ݀ଷଶ = 3(݇ଵ + ݇ଶ + ݇ଷ) + 3 

and so ܰ is divisible by 3. 

      b) There exists a nice number ܰ. For example, if ܰ = 30 and its divisors are  

݀ଵ = 1,݀ଶ = 2,݀ଷ = 5, then 
ܰ = ݀ଵଶ + ݀ଶଶ + ݀ଷଶ = 1ଶ + 2ଶ + 5ଶ = 1 + 4 + 25 = 30 = ܰ 
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i.e. ܰ is nice. Consider ܰ() =  is some positive integer and  ଶ, whereܰ
 > 1. If ݀ଵ,݀ଶ,݀ଷ are distinct divisors of ܰ, then it is obviously that 
݀ଵ,݀ଶ,݀ଷ are distinct divisor of ܰ(), and  

()ܰ = ଶܰ = [ܰ = ݀ଵଶ + ݀ଶଶ + ݀ଷଶ] = (݀ଵଶ + ݀ଶଶ + ݀ଷଶ)ଶ
= (݀ଵ)ଶ + (݀ଶ)ଶ + (݀ଷ)ଶ. 

     From this equality it follows that ܰ() is nice too. Since any positive integer 
can be used as , there are infinitely many nice numbers ܰ(). 

      In this way one can get different infinite sets of nice numbers, for example, 
ܰ = ܰ ଶ, or30 = ܰ ଶ, or126 = ܰ ଶ, or195 =  ଶ, since170

30 = 1ଶ + 2ଶ + 5ଶ; 126 = 3ଶ + 6ଶ + 9ଶ; 195 = 1ଶ + 5ଶ + 13ଶ; 870 = 2ଶ +
5ଶ + 29ଶ. 

1.78  Every one of six pupile attends exactly two of four hobby groups. 
There are no pupils attending the same two hobby groups. Each hobby 
group is open every day. During some consecutive days, every one of 
these six pupils has attend one of her/his hobby group. It has been 
observed that each of these days each hobby group has been attended 
by either one or two of the pupils. Moreover, for any chosen two days, 
there has been a pupil who has attended different hobby groups 
during these two days. Find the largest number of the days for which 
the situation described above is possible. 

M.Karpuk- NMO-2017 

Solution: Answer: 24 days. Note that from four hobby groups one can from 
exactly 4 ∙ ଷ

ଶ
= 6 different pairs.Since we have exactly six pupils, for each pair 

of the hobby group there exist exactly one pupil attending just these two hobby 
groups. By condition, each hobby group is attended by either one or two pupils 
and there are exactly four hobby group, so in each of these days there are 
exactly two hobby groups attended by two pupils and there are exactly two 
hobby groups attended by one pupil. 

    Consider arbitrary day. Let this day hobby group ܣ and ܤ be attended by two 
pupils. Since, as was shown above, there is a pupil attending just these two 
hobby groups, without loss of generality we can assume that this pupil 
attended hobby group ܣ. 
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    Each of two remained hobby groups ܥ and ܦ has been attended by one 
pupil. Again, there exists a pupil attending just these hobby groups ܥ and ܦ. 
Suppose that this pupil has attended hobby group ܥ. Show that this 
information is sufficient to uniquely indicate for each hobby group who of the 
pupils has attended this hobby group. 

   Since in the considered day hobby group ܥ has been attended by exactly one 
pupil (this pupil attends hobby groups ܥ and ܦ), the pupil attending ܣ	and  ܥ 
has attended hobby group ܣ, and the pupil attending ܤ and ܥ has attended 
hobby group ܤ. Further, since hobby group ܣ has been attended by two pupils 
(one of them attend hobby groups A and ܤ, and the other one attends hobby 
group ܣ and ܥ), the pupil attending ܣ and ܦ has attended hobby group ܦ. 
Finally, the pupil attending hobby groups ܤ and ܦ has attended hobby group 
 has been attended by exactly one pupil attending ܦ since hobby group ,ܤ
hobby group ܣ and ܦ. 

   We have exactly 4 ∙ ଷ
ଶ

= 6 ways to choose the pair (ܤ,ܣ) that have been 
attended by two pupils, and for each such pair we have two ways to fix the 
hobby group has been attended by the pupil attending just these two hobby 
groups. For hobby groups ܥ and ܦ we have two ways to choose the hobby 
group that has been attended by the pupil attending these hobby groups ܥ and 
Thus, we obtain 6 .ܦ ∙ 2 ∙ 2 = 24 different days in total.  

1.79 The central area of a town has a fprm of the ( + ) ×  
rectangle, which is formed by  ×  tiles. To iluminate the area, one-
lamp lampposts are used. The lampposts are placed at the corners of 
some tiles, including the boundary of the area. The lamp on a 
lamppost illuminates all tiles with a corner at the lamppost position, 
and only those.Find the smallest number of the lampposts required to 
illuminate the whole area, even if one of the lamps should burn out. 

E.Barabanov, M.Karpuk, A.Voidelevich- NMO-2017 

Solution: Answer: 2(݊ + 2) ቂାଵ
ଶ
ቃ, where [ݔ] is the greatest integer not 

exceeding ݔ.	    We paint some tiles of the town square black ( if ݉ = 2݇ + 1	is 
odd, then see Fig.1, if ݉ = 2݇ is even, then see Fig.2). 

    It is easy to see that any lamp can illuminate at most one painted tile. By 
condition, any tile must be illuminated by at least two lamps. It follows that the 
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minimum number of the lampposts is greater than or equal to 2݈, where ݈ is 
the number of painted tiles. If the lengths of the square is odd, i.e. ݉ = 2݇ +
1, where ݇ ≥ 0, then  

݈ = (݊ + 1)(݇ + 1) = (݊ + 1) 
݉ + 1

2
൨ 

    If ݉ = 2݇, then ݈ = (݊ + 1)݇ = (݊ + 1) ቂାଵ
ଶ
ቃ.	    On the other hand, if we 

place the lampposts as it is shown in the figures (the lamppost are indicated as 
uncoloured circles), then any of the square tiles will be illuminated by two 
lamps. 

                   

݉ = 2݇ + .݃݅ܨ					1 1																																																݉ = .݃݅ܨ						2݇ 2 

   So, 2݈ = 2(݊ + 1) ቂାଵ
ଶ
ቃ lampposts are sufficient to illuminate the town 

square so that the problem condition will hold. 

1.80 What is the maximum number of bishops that can be placed on 
an ૡ × ૡ chessboard such that at most three bishops lie on any 
diagonal? 

 Saudi Arabia-NMO-2015 

Solution:   If the chessboard is colored black an white as usual, then any 
diagonal is a solid color. Sp we may consider bishops on black and white 
squares separately.   In one direction, the lengths of the black diagonals are 2, 
4, 6, 8, 6, 4, and 2. Each of these can have at most three bishops, except the 
first and last diagonals which can have at most two, giving a total of at most 
2+3+3+3+3+3+2=19 bishops on black squares. Likewise there can be at most 19 
bishops on white squares for a total of at most 38 bishops. 
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● ● ● ● ● ● ● ● 
●  ● ● ● ●  ● 
●       ● 
●       ● 
●       ● 
●       ● 
● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● 

 

Conversely, if we place 38 bishops on the four boundaries of the table and on 
the second and seventh rows except the second and seventh square of the 
second row, as shown in the picture , one ca check that this arrangement 
satisfies the condition of the problem. 

1.81 When a factory modernized its equipament, the productivity 
grew by 25%. Therefore, the management decided to fire 20% of the 
employees. By how many % has the number of the final products in 
this factory changed after both actions? 

(A) It has decreasd by 5%.                              (B) It has decreased by 2,5%. 

(C) It has grown by 2%.                                    (D) It has not changed. 

(E) It has grown by 5%. 

 Slovenia NMO-2013 

Solution:   Denote the number of products produced by the factory before the 
changes by ݔ. Then they produced ଵଶ

ଵ
∙  products after the modernization of ݔ

the equipment. After firing the employees the number has dropped to 
଼
ଵ

∙ ଵଶହ
ଵ

∙ ݔ =  products. Hence, the number of products has not changed. The ݔ
correct answer is D. 

1.82 What is the value of the product ࢞ ∙ ࢞if  ࢟ = ࢟ࢇ and ࢇ = ૡ? 

(a) 4                         (B) 3                     (C) 3                      (D) 0                    (E) 1 

 Slovenia NMO-2013 
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Solution: Since 81 = ܽ௬ = (3௫)௬ = 3௫௬ , we have ݕݔ = 4. The correct answer 

is A. 

1.83 If at the cinema three box qffices are open, the visitors have to 
wait 15 min to buy a ticket. By how many minutes is the waiting time 
reduced if two more box offices are open? 

(A) 3                   (B) 5                        (C) 6                     (D) 7                     (E) 10 

 Slovenia NMO-2013 

Solution: With 3 box offices open the waiting time is 15 minutes. If 1 box 
office s open the waiting time is 3 times longer, i.e. 45 minutes. If 5 box offices 
are open the waiting time is reduced by 49/5=9 minutes. So, if two additional 
box offices are opened the waiting time is reduced by 15-9=6 minutes. The 
correct answer is C. 

1.84 Find all natural numbers  of the form  = ࢈ࢇࢉതതതതതതതതതതതതത, such that 
all their digits are different and they are divisible by 9 and 11. Here, 
 .are digits ࢉ and ࢈,ࢇ

Slovenia  NMO-2017 

Solution: The number ݊ is divisible by 99. We may write 

݊ = 23ܾܽ1തതതതതതതത ∙ 100 + 60 + ܿ = 23ܾܽ1തതതതതതതത ∙ 99 + 23ܾܽ1തതതതതതതത + 60 + ܿ = 

= 23ܾܽ1തതതതതതതത ∙ 99 + 23ܽതതതതത ∙ 100 + 10ܾ + 1 + 60 + ܿ = 

= ൫23ܾܽ1തതതതതതതത ∙ 99 + 23തതതത൯ ∙ 99 + 23ܽതതതതത + 10ܾ + ܿ + 61 = 

= ൫23ܾܽ1തതതതതതതത ∙ 99 + 23ܽതതതതത + 2൯ ∙ 99 + ܽ + 10ܾ + ܿ + 93, 

so 99 divides ܽ + 10ܾ + ܿ + 93. Since ܽ, ܾ and ܿ are different digits, which are 
also not equal to 1, 2, 3 or 6, we get ܽ + 10ܾ + ܿ ≥ 4 + 5 + 0 = 9 and 
ܽ + 10ܾ + ܿ ≤ 7 + 90 + 8 = 105. So, 102 ≤ ܽ + 10ܾ + ܿ + 93 ≤ 198. On 
the other hand, ܽ + 10ܾ + ܿ + 93 is divisible by 99, so ܽ + 10ܾ + ܿ + 93 =
198, which implies ܾ = 9 and {ܽ, ܿ} = {7,8}. There are two solutions, 
݊ = 237918 and ݊ = 2389167. 
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1.85 A herd o deer consists of harts and hinds. Hinds represent 55% of 
the hert, and their weight is 45% of the total weight of the herd. How 
many times is the average weight of a hart greater than the average 
weight of a hind? 

Slovenia  NMO-2013 

Solution: Assume that the herd consists of ݔ animals with the combined 
weight of ݕ. Then there are ହହ

ଵ
hinds with the combined weight of ସହ ݔ

ଵ
 and ݕ

ସହ
ଵ

harts with the combined weight of ହହ ݔ
ଵ

 The average weight of a hind is .ݕ

then ସହ
ଵ

:ݕ ହହ
ଵ

ݔ = ଽ௬
ଵଵ௫

	, and the average weight a hart is ଵଵ௬
ଽ௫

: ଽ௬
ଵଵ௫

= ଵଶଵ
଼ଵ

 times 
larger than the average weight of a hind. The correct answer is C. 

1.86 Find all integer solutions of the equation  +  =  .ૢ

Slovenia  NMO-2013 

Solution: If the pair (݉,݊) is a solution of the equation, then so is the pair 
(−݉,−݊). So, we may assume that ݉ is non-negative. Rearrange the equation 
into 2݊ଶ − 9݉݊ +݉ସ = 0 and treat it is a quadratic equation in ݊. Its 
discriminant is 81݉ଶ − 8݉ସ. If the equation is to have integer solutions, the 
discriminant has to be a perfect square. So, 81 − 8݉ଶ is a perfect square. In 
particular, 81 − 8݉ଶ ≥ 0, so ݉ ≤ 3. It is easy to verify that 81 − 8݉ଶ is a 
perfect square for ݉ = 0,݉ = 2 and ݉ = 3. When݉ = 0 the solution is 
݊ = 0, when ݉ = 2 the two solutions are ݊ = 1 and ݊ = 8, for ݉ = 3 the only 
integer solution is ݊ = 9. All the integer solutions of the equation are 
(−3,−9), (−2,−8), (−2,−1), (0,0), (2,1), (2,8) and (3,9). 

1.87 When the third grade pupil Benjamin calculated the sum 
 +  +  + ⋯+  he forgot to add some terms, and he got an 
incorrect sum that was divisible by 2011. When  Anika calculated the 
sum  =  +  +  + ⋯+ , she forgot to add the same terms as 
Benjamin, and she got an incorrect sum ࡺ that was divisible by 2014. 
What is the ratio ࡺ


 of the two sums? 

 Slovenia  NMO-2013 
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Solution:  Let us denote the sum of the terms omitted by Benjamin by ݔ. Since   
1 + 2 + 3 +⋯+ 2012 = ଶଵଶ∙ଶଵଷ

ଶ
= 1006 ∙ 2013, 

Benjamin’s result was equal to 1006 ∙ 2013 − -So, there exists a non .ݔ
negative integer ݉, such that 1006 ∙ 2013 − ݔ = 2011݉. Since  

ܣ = 1 + 2 + 3 + ⋯+ 2013 =
2013 ∙ 2014

2
= 1007 ∙ 2013 

Anika’s result was equal to ܰ = 1007 ∙ 2013 − -So, there exist a non .ݔ
negative integer ݊, such that 1007 ∙ 2013 − ݔ = 2014݊. Expressing ݔ from 
both equalities and comparing the result we get 1006 ∙ 2013 − 2011݉ =
1007 ∙ 2013 − 2014݊, or 2014݊ − 2011݉ − 2013 = 0. This last equality can 
be rearranged to 2011(݊ −݉) = 2013 − 3݊. Since  

2014݊ = 2013 ∙ 1007 − ݔ ≤ 2013 ∙ 1007, we get ݊ ≤ ଶଵଷ∙ଵ
ଶଵସ

< 1007. 

So, −1008 < 2013 − 3݊ ≤ 2013. At the same time 2013 − 3݊ is divisible by 
3 and the equality implies it is also divisible by 2011. This is only possible for 
2013 − 3݊ = 0 or ݊ = 671. Hence, ே


= ଶଵସ

ଶଵଷ∙ଵ
= ଶଵସ∙ଵ

ଶଵଷ∙ଵ
= ଶ

ଷ
. 

1.88 A square is divided into six rectangles, all of the same area. The 
length of side  equals 5.What is the length of side ?  

 

 Germany NMO-2015 

Solution:The six rectangles have equal areas. Rectangles ܿ and ݀ are twice as 
tall as rectangle ܽ and therefore also twice as thin. 

Hence they have width ହ
ଶ
. Rectangle ݁ thus has a width of  
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ହ
ଶ

+ ହ
ଶ

+ 5 = 10 and must be half as tall as rectangle ܽ.This means that 

rectangle ݂ is precisely ହ
ଶ
 times as tall as rectangle ܽ and therefore has a width 

of ହ
ହ/ଶ

= 2.	    It follows that the square has sides of length 5 + ହ
ଶ

+ ହ
ଶ

+ 2 = 12. 
Because the square has a height of rectangle ܽ, the height of rectangle ܽ 
equals |ܥܤ| = ଵଶ

ହ/ଶ
= ଶସ

ହ
. 

1.89 Carl has a large number of apples and pears. He wants to pick ten 
pieces of fruit and place them in a row. He wants to do it in such way 
that there is no pear anywhere between two apples. For example, the 
fruit sequences AAAAAAAAAA and AAPPPPPPPP are allowed, but 
AAPPPPPPPA and APPPPPPPAA are not. How many sequences can Carl 
make? 

 Germany NMO-2015 

Solution: One sequence consists of pears alone. Next, we count sequences 
containing at least one apple. In such a sequence, all apples occur 
consecutively, because there can be no pear anywhere between two apples. If 
we want to have 8 apples, we can place them in positions 1 through 8, 2 
through 9, or 3 through 10. This gives three possible sequences. In this way we 
find 1 sequence containing 10 apples, 2 sequences containing 9 apples, 3 
sequences containing 10 apples, 2 sequences containing 9 apples, 3 sequences 
containing 8 apples, and so on, ending with 10 sequences containing 1 apple. 
In total there are 1 + 2 + 3 +⋯+ 10 = 55 sequences containing at least one 
apple. The total number of sequences is therefore 55 + 1 = 56. 

1.90 If you were to compute 

ૢૢૢ…ૢૢᇣᇧᇧᇤᇧᇧᇥ
ି࢙ࢋ

× …ᇣᇧᇧᇤᇧᇧᇥ
ି࢙࢛࢘ࢌ

 

And then add up all digits of the resulting number, what number 
would the final outcome be? 

 Germany NMO-2015 

Solution: A good strategy is to first consider smaller examples. We find: 
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9 × 4 = 40 − 4 = 36, 99 × 44 = 4400 − 44 = 4356 

999 × 444 = 444000 − 444 = 443556 

9999 × 4444 = 44440000 − 4444 = 44435556	 

The pattern should be clear. To solve the problem, observe that 999 … 99 =
1000 … 00 − 1, where the first number has 2014 zeroes. The product is 
therefore equal to  

444 … 44ᇣᇧᇧᇤᇧᇧᇥ
ଶଵସି௨௦

000 … 00ᇣᇧᇧᇤᇧᇧᇥ
ଶଵସି௨௦

− 444 … 44ᇣᇧᇧᇤᇧᇧᇥ
ଶଵସି௨௦

= 444 … 44ᇣᇧᇧᇤᇧᇧᇥ
ଶଵଷି௨௦

3 555 … 55ᇣᇧᇧᇤᇧᇧᇥ
ଶଵଷି௨௦

6 

Adding these digits, we obtain 2013 ∙ 4 + 3 + 2013 ∙ 5 + 6 = 2013 ∙ 9 + 9 =
18126. 

1.91 We consider  ×  −tables containing a number in each of the 25 
cells. The same number may occur in different cells, but no row or 
column contains five equal numbers. Such a table is called ܡܜܜ܍ܚܘ if in 
each row the cell in the middle contains the average of the numbers in 
that row, and in each column the cell in the middle contains the 
average of the numbers in that column. The ܍ܚܗ܋ܛ of a pretty table is 
the number of cells that contain a number that is smaller than the 
number in the cell in the very middle of the table. What is the 
smallerest possible score of a pretty table?  

 Germany NMO-2015 

Solution: 

We first show that every pretty table has 
a score of at least 3. Consider such a 
table and let ܽ be the number at the very 
middle. The five numbers in the middle 
row have an average of ܽ and are not all 
equal to ܽ. Hence at least one of these 
numbers must be smaller than ܽ. 
Similarly, at least one of the numbers in 
the middle column must be smaller than 
ܽ. Let this number be ܾ. Since ܾ is the average of the numbers in its row, one of 

4 4 3 4 0 

4 4 3 4 0 

3 3 0 3 -9 

4 4 3 4 0 

0 0 -9 0 -36 
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the numbers in that row must be smaller than ܾ, and hence also smaller than 
ܾ, and hence also smaller than ܽ. Thus the table contains at least three 
different cells than have a number smaller than the number in the very middle. 
Its score is therefore at least 3.In the figure on the right you can find a pretty 
table with a score equal to 3. It follows than 3 is the smallest possible score.   

1.92 Note that :ૠ = ૠૢ. Consider the number … 
consisting of 1000 fives. What is the remainder of this number on 
division by 7? 

A) 2                   B) 3                C) 4                  D) 5                  E) 5               E) 6 

Germany  NMO-2014 

Solution:  C-4 

1.93 A pawn is placed on a board consisting of ten squares, numbered 
from 1 up to 10. The pawn is allowed to move from the square it is on 
to square that either has a number that is two less, or a number that is 
twice as large. The pawn wants to make a sequence of moves that 
visits as many squares as possible. It may freely choose its starting 
point. It may visit squares multiple times. How many squares can the 
pawn visit in a single sequence of moves? 

A) 6              B) 7                C) 8                   D) 9                 E) 10 

 Germany NMO-2014 

Solution: D-9 

1.94 Jan has huge square table of which the cells are numberre as in 
the figure. Which of the following five numbers does not occur in the 
leftmost column? 

A) 55              B) 105                 C) 172                 D) 212              E) 300 

Germany NMO-20172014 
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Solution: D-212 

1.95 Brigit has a combination lock that consists of three rings next to 
one another, each having the digits 0 up to 9 in order. She turns the 
three rings until her secret combinations is visible. Aside from this 
combination, there are 9 more combinations visible on the three rings. 
Coincidentally, one of these numbers is three times the secret 
combination. What is Brigit’s secret combination?   

A) 106                 B) 123                  C( 272                   D) 318                  E) 328 

 Germany NMO-2014 

Solution: E-328 

1.96 A member of a group a ten friends buys a bag of candy to share 
amoung the group. First he himself, who likes candy more than the 
rest of the group, takes a quarter of the candy. Another member grabs 
30 pieces of candy. A third member grabs 10% of what is left. The 
remainder of the group distributes the remainder of the candy 
evently. The total number of pieces of candy was less than 500 and 
everyone got at least one piece of candy. How many pieces of candy 
were there in the bag? 

 Germany NMO-2014 

Solution: 320 

1.97  There are 36 balls, numbered from 1 up to 36. We want to put 
these into boxes in such a way that the following two conditions are 
satisfied: 

(1) Every box contains at least 2 balls. 

(2) Whenever you pick up two balls from a box, the sum of the two 
numbers of these balls is always a multiple of 3. 
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What is the smallest number of boxes for which this is possible? 

Germany  NMO-2017 

Solution: 13 

1.98 Tom and Jerry were running a race. The number of runners 
finishing before Tom was equal to the number of runners finishing 
after him. The number of runners finishing before Jerry was three 
times the number of runners finishing after him. In the final ranking, 
there are precisely 10 runners in finished at the same time. 

How many runners participated in the race? 

A) 22             B) 23                 C) 41             D) 43             E) 45 

Germany  NMO-2017 

Solution: Let ݊ be the number of runners. The number of runners that finished 
before Tom equals ିଵ

ଶ
 (half of all runners besides Tom). 

    The number of runners that finished before Jerry equals ଷ(ିଵ)
ସ

. Since exactly 

10 runners finished before Jerry, it follows that ଷ(ିଵ)
ସ

− ିଵ
ଶ

 equals 11 (Tom 
and the runners between Tom and Jerry). 

    We find that ଵ
ସ

(݊ − 1) = 11, hence ݊ = 4 × 11 + 1 = 45. There were 45 
runners participating in the race. 

1.99 A garden with a pond (the black hexagon) will be tiled using 
hexagonal tiles as in the figure. The tiles come in three colours: red, 
green and blue. No two tiles that share a side can be of the same 
colour. In How many ways can the garden be tiled? 

A) 3                   B) 6                       C) 12                               D) 18 
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Germany  NMO-2017 

Solution: 

    We start by colouring the two indicated tiles at the 
bottom. This can be done in six ways: there are three 
options for the first tile and for each option there are 
two possible colours for the second tile. In the figure, 
the colours red (ݎ) and green (݃) are chosen. 

    Now that these two tiles are coloured, the colours 
of most of the other tiles are determined as well. The 
tile above the red tile can only be blue. The tile above 
the green tile must be red and therefore the tile left 
of the green tile must be blue. In this way the colours of all tiles, except the two 
on the right (white in the figure) are fixed. For these last two tiles, there are 
three possible colourings. The upper and lower tile can be coloured either 
green and red, or blue and red, or blue and green. 

    Since each of the six allowed colourings of the first two tiles can be extended 
in three ways to a complete colouring, we find a total of 6 × 3 = 18 possible 
colourings. 

1.100 A motorboat is moving with a speed 25 kilometres per hour, 
relative to the water. It is going from Arnhem to Zwolle, moving with 
the constant current. At a certain moment, it has travelled 42% of the 
total distance. From that point on, it takes the same amount of time 
to reach Zwolle as it would to travel back to Arnhem.What is the 
speed of the current (in kilometers per hour)? 

A) 3           B) 4          C) ૢ

           D) 5           E) 6 

 Germany NMO-2015 

Solution: Answer B) 4. From the mentioned point, it takes the same time to go 
42% of the distance upstream and to go 58% of the distance downstream. This 
means that the boat is ହ଼

ସଶ
 times as fast going downstream as going upstream. 
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If the water flows at a speed of ݒ kilometres per hour, then we find ଶହା௩
ଶହି௩

= ହ଼
ସଶ

. 
Hence 58 ∙ (25 − (ݒ = 42 ∙ (25 +  or ,(ݒ

 1450 − ݒ58 = 1050 + We find 400	.ݒ42 = ݒ hence ,ݒ100 = 4. 

1.101 A piece of apple pie had been stolen, and five children are 
behind questioned on this. They all know who the culprit is, but not all 
of them are speaking the truth. Whenever one of the children lies, the 
next one will feel so guilty about this that he or she will tell the truth. 
The children make the following claims in the order shown: 

 Asim: ‘’Coen and I both didn’t do it.” 
 Bob: “Either Coen or Dilan is the culprit” 
 Coen:”Eva and I both didn’t do it.” 
 Dilan: “Asim is the culprit.” 
 Eva:”At least two of Asim,Bob,Coen, and Dilan lied.” 

Who stole the apple pie? 
A) Asim              B) Bob            C) Coen          D) Dilan            E) Eva 

Germany  NMO-2014 

Solution: B) Bob                    

1.102 Max has a lot white and red paint. He starts with a 2-litre bucket 
in which one litre of red paint and one litre of white paint. Max now 
repeats the following step a number of times. 

Step. Max pours precisely one litre out of the bucket, into a large 
container. Next, he fills the  

          bucket back up to 2 litres of paint, using either the white paint, 
or the red paint. After  

         this, he mixes the paint in the bucket. 

After a number of steps, the percentage of red paint in the bucket 
must be between 83 and 84 percent. What is smallest number of steps 
Max needs to attain this? 
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A) 5           B) 6             C) 7               D) 8               E) Max cannot obtain 
such a percentage 

 NMO-2017 

Solution: Answer: B) 6             

1.103 The product of three numbers ࢉ࢈ࢇതതതതത ∙ തതതത࢈ࢇ ∙ ࢇ =  ∗∗∗∗ ૠ is a 6-
digit number with first and last digits equal to 3 and 7, respectively. 
The digits ࢈,ࢇ,  are not necessarily distinct. Find all possible values of ࢉ
the product. 

 Ukrainian NMO-2017 

Solution: Since the product is odd and does not end with 5, all of the digits 
ܽ, ܾ, ܿ are odd and are not equal to 5. From the inequalities 911 ∙ 91 ∙ 9 =
746109 > 399997 and 399 ∙ 39 ∙ 3 = 56683 < 300007 it is clear that ܽ = 7. 
The product ܾܽܿ = 7ܾܿ ends with 7, so the possible cases for (ܾ, ܿ) are:  

(9; 9), (7; 3), (3; 7), (1; 1). 

Let us check these four cases:  799 ∙ 79 ∙ 7 = 441847,773 ∙ 77 ∙ 7 =
416647,737 ∙ 73 ∙ 7 = 37660		and 711 ∙ 71 ∙ 7 = 353367. 

1.104 Oleg has labelled all the columns and all the rows of a  ×  
table with 100 distinct numbers ࢇ, … ,࢈  andࢇ, … ࢈, , 
respectively; exactly 50 of these numbers are rational. Then he has 
placed into each cell (, ࢇ the number ( +  Find the greatest .࢈
possible number of rational numbers placed into the cells. 

O.Podlipsky-Regional MO-Russia-2017 

Solution: Answer. 1250. Assume there are ݔ rational numbers among the ܽ. 
Then the total number of irrationals in the cells is at least ݔ ∙ ݔ + (50 − (ݔ ∙
(50 − (ݔ ≥ 1250 (since rational + irrational=irrational). 

In an example, ݔ = 25,	 all irrationals among the ܽ are in ℚ + √2, and those 
among the ܾ are in ℚ −√2. 



DANIEL SITARU            MARIAN URSĂRESCU              FLORICĂ ANASTASE 
 

81 WORLD’S  MATH  OLYMPIADS 
 

1.105 We want to exchange a 200-euro bill for bills of 5, 10, and 20 
euros. One possibility is to exchange it for 5 bills of 20 euros, 6 bills of 
10 euros, and 8 bills of 5 euros. Another possibility is to exchange it for 
20 bills of 10 euros.How many possibilities are there to exchange a 
200-euro bill for bills of 5, 10, and 20 euros? 

 Germany NMO-2014 

Solution: 121 

1.106 By stacking small cubes (all of the same size) neatly, a larger 
cube is formed. Two small cubes with faces placed against one other 
are called ܛܚܝܗ܊ܐܑ܍ܖ. So a cube can have at most six neighbours. 
The number of cubes having precisely four neighbours. The number of 
cubes having precisely four neighbours is 96.How many small cubes 
are there having precisely five neighbours: 

 Germany NMO-2017 

Solution: 384 

1.107 The figure below represents a puzzle. The goal is to fill each of 
the 16 cells with a number from 1 up to 4. This has to be done in such 
a way that in each column and in each row, the four numbers are 
distinct. Moreover, in each of the four  × -squares, the four 
numbers have to be distinct as well. Finally, the four numbers in the 
grey squares also need to be distinct .How many solutions does this 
puzzle have? 

 

Germany NMO-2014 
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Solution: 168 

1.108 A grasshopper is sitting in the origin of the number line, at 
number 0, and then it jumps, always in the same direction. For a 
positive integer , in the first jump the grasshopper jumps to number 
1, and every following jump is exactly  times longer than the 
previous jump. There is a hole in place of all multiples of number 
2015.Determine all positive integers ܓ such that the grasshopper can 
jump 2015 times without falling into a hole. 

 Croatian NMO-2015 

Solution: Let ܽ be the number the grasshopper is located at after the ݊ −  ℎݐ
jump, i.e. ܽଵ = 1,ܽ = 1 + ݇ +⋯+ ݇ିଵ,݊ ≥ 2. 

We are looking for all numbers ݇ such that 2015 ∤ ܽ for all ݊ = 1,2, … ,2015. 

Suppose that ܯ(݇, 2015) = ݀ > 1. Then every	ܽ divided by݀ gives the 
reminder 1, and since 2015 is divisible by ݀ we have that 2015 ∤ ܽ for all ݊. 
Therefore, all positive integers which are not relatively prime to 2015 comply 
with the terms of the problem. 

If ܯ(݇, 2015) = 1, we observe the remainders of dividing ܽଵ, … ,ܽଶଵହ by 
2015. If one of them is divisible by 2015, such a ݇ is not good. Otherwise, since 
there are 2014 possible remainders, at least two numbers give the same 
remainder. Let these numbers be ܽ and ܽ ,݉ > ݈. In this case, their 
difference is divisible by 2015. On the other hand, we have that 

ܽ − ܽ = ݇ +⋯+ ݇ = ݇൫1 + ⋯+ ݇ିିଵ൯ = ݇ ∙ ܽି . 

From 2015 ∣ ݇ ∙ ܽି  and ܯ(݇, 2015) = 1, it follows that 2015 ∣ ܽି, 
which is in contradiction with the assumption that none of the numbers 
ܽଵ, … ,ܽଶଵହ is divisible by 2015. Therefore, if ܯ(݇, 2015) = 1, the 
grasshopper will jump into a hole. 

To conclude, the only numbers which are suitable for the terms of the problem 
are those which are not relatively prime to 2015. 
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1.109 Pasha chose 2017 (not necessarily distinct) positive integers 
,ࢇ,ࢇ … ૠࢇ, , and then he plays a solitare game. Initially, he has 
2017 ampty large boxes and an unbounded supply of small stones. By 
a move, Pasha adds ܉ stones into some box by his choice, ܉ stones 
into any other box by his choice,..., ࢇૠ stones into the remaining 
box. His aim is to equalize the numbers of stones in all boxes. Can he 
choose the initial numbers so that the aim is reachable in 43 moves, 
but unreachable in any smaller (nonzero) number of moves? 

I.Bogdanov-Regional MO Russia-2017 

Solution: Answer. Yes. Notices that 2017 = 43 ∙ 46 + 39.	An example of 
Pasha’s numbers consist of 39 twos, 46 numbers equal to 44, and ones as the 
remaining numbers. 

1.110 Initially  > 1 positive integers are written on the board. On 
each minute, a new number that is the sum of squares of all already 
written numbers appears on the board. (For example, if initial 
numbers were 1,2,2 then on the first minute the numbe  +  +  
appears). Prove that the 100-th new number has at least 100 different 
prime divisors. 

I.Bogdanov, P,Kozhevnikov-Regional  MO-2017 

Solution: Let ܵ  be the number appearing on the board on the ݅ −th minute. 

Then ܵାଵ = ܵ( ܵ + 1), so ܵାଵ contains all prime divisors of ܵ  plus at least 
one more. 

1.111 Let  prime and  be a positive integer. Determine all pairs 
) :satisfyng the equation (,) + ( +  = ) + ). 

A.Fellouris-Hellenic NMO-2014 

Solution: The given equation is written  ) + ݉ + 1) = (݉ + 1)ଷ; 		(1) 

Therefore the prime  is a divisor of (݉ + 1)ଷ. Hence  ∣ (݉ + 1), which 
means that there exists positive integer ݇ such that ݉ + 1 =  Then, from .݇
(1) we get: 
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) + (݇ = ଷ(݇) ⇔ ݇ଷ ∣ (݇ + 1) ⇒ ݇ଷ ∣ (݇ + 1) ⇒ ݇ = 1. 

Hence  = 2,݉ = 1 and (,݉) = (2,1). 

1.112 We color the numbers ,,, … , with two colors white and 
black in such a way that both colors are used. Find the number of 
ways we can perform this coloring if the product of white numbers 
and the product of black numbers have maximal common divisor 
equal to 1. 

P.Bregiannis-Hellenic NMO-2014 

Solution: Number 1 can be colored in two ways, white or blank. Number 2 
also can be colored white or blank. Then all even numbers 
2,4,6,8,10,12,14,16,18,20 have to be colored with the color of 2. 

Also all numbers having common divisor greater than 1 with the above 
numbers must be colored with the color of 2. The remaining numbers greater 
that 10, that is , 11,13,17,19 can be colored in two ways. Therefore the 
coloring can b made with 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 2 = 64 different ways. 
However we must delete the two cases we color all numbers white or blank. 
So we have finally 62 different ways. 

1.113 Find all values of integer  for which the number  = ૡି
ା

 is 
equal with the cube of a rational number. 

A.Fellouris-Hellenic NMO-2014 

Solution: Let , ݍ ∈ ℤ, ݍ ≠ 0, with (, (ݍ = 1 such that  

ܣ =
8݊ − 25
݊ + 5

= ൬

ݍ
൰
ଷ

; 		(1) 

Then (ଷ, (ଷݍ = 1, which from relation (1) we get: 

ଷ(8݊ݍ − 25) = ݊)ଷ + 5); 		(2) 

from which we conclude that 
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ଷ ∣ (8݊ − 25) and ݍଷ ∣ (݊ + 5) ⇒ ∃݇ ∈ ℤ: 8݊ − 25 = ݊ ଷ and݇ + 5 =
;ଷݍ݇ 		(3) 

In fact, if 8݊ − 25 = ݇,ଷ݇ ∈ ℤ, then from (2) we find ݊ + 5 =   ଷ and soݍ݇

8(݊ + 5) − (8݊ − 25) = ଷ8)݇ − (ଷݍ ⇒ ݍ2)݇ − ଶݍ4)( + ݍ4 + (ଶ = 65 

Therefore, the numbers ݇, ݍ2 − ଶݍand 4  + ݍ2 +  .ଶ are divisors of 65

We observe that 4ݍଶ + ݍ2 + ଶ = ଶݍ3 + ) + ଶ(ݍ ≡  ,Moreover .(3	݀݉)	1
we have  

ଶݍ4   + ݍ2 + ଶ = ଶݍ3 + ) + ଶ(ݍ ≥ 3, and so, since 4ݍଶ + ݍ2 +  ଶ is
divisor of 65 its unique value is 

ଶݍ4 + ݍ2 + ଶ = 13 ⇔ ଶݍ3 + ) + ଶ(ݍ = 13, 

leading to the following cases: 

ଶݍ4 + ݍ2 + ଶ = 13,݇ = ݍ±1.2 −  = ±5. Then  = ݍ2 ∓ 5 abd  

ଶݍ4 + ݍ2)ݍ2 ∓ 5) + ݍ2) ∓ 5)ଶ = 13 ⇔  = ݍ2 ∓ ଶݍ5,2 ∓ ݍ5 + 2 = 0 ⇔ 

 = ݍ2 ∓ 5, ݍ = ±2 ⇔  = ∓1, ݍ = ±2. 

Then for both cases we have: 

൬

ݍ
൰
ଷ

= −
1
8
⇒

8݊ − 25
݊ + 5

= −
1
8
⇔ 8(8݊ − 25) − (݊ + 5) ⇔ ݊ = 3. 

1.114 Let us call a year ܌܍ܚܗܔܗ܋	if the decimal representation of its 
number has no repeating digits. For example, all years from 2013 to 
2019 are colored, unlike 2020. 

a) Find the nearest chain of seven consecutive colored years in 
the future. 

b) Can a chain of more than seven consecutive years happen in 
the future?  

Maria Rozhkova-Ukraine NMO-2015 

Solution: Answer: a) 2103,....,2109; b) No. 
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a)Let us show hat nearest sequence of 7  colored years is 2103,...,2109. First, 
we prove that in this century no sequence of more than six colored years can 
happen any longer. We see that digits 0 and 2 cannot represent unis or tens. 
Therefore, a chain is broken at each year ending in 0 or 2, which gives us the 
only way to form a chain of 7 years: 

20 ∗ 3,20 ∗ 4, … ,20 ∗ 9. 

Here, ∗ can only be equal to 1, but his is he current chain. 

In the next century, after 2100, the first chain is easy to find: 2103,...,2109. 

b)Years we deal with are written with at least four digits. A colored chain 
cannot contain numbers ending in ∗∗ 99, hence the number of hundreds 
doesn’t change throughout the chain. This implies that there are only 8 
possible last digits. 

Assume some colored chain has 8 numbers. We have two cases. 

1. All years have the same number of tens. Then there are only 7 options for 
the last digit. Contradiction. 

2. The number of tens changes with in the chain. In this case the tens digit 
cannot be equal to 9. Assume this digits changes from ݔ to ݔ + 1. The chain 
has 8 numbers, thus, i should have two numbers of the type 

ݔݔܾܽ + 1തതതതതതതതതതതത, ܾܽݔ +  ,തതതതതതതതതതതതݔ1

For example, they might be 2145 and 2154. But then the chain has at least 10 
years (for example, 2145 to 2154). Again, we have a contradiction.  

 

1.115 A ૢ × ૢ square is divided into 81 small  ××  squares, 8 of 
which are painted black, the rest being white. We cut a fully white 
rectangle (possibly, a square) out of the big ૢ × ૢ square. What is the 
maximal area of the rectangle that we can attain regardless of the 
positions of the black squares? It is only allowed to cut the rectangle 
along the grid lines.  

Bogdan Rublyov-Ukraine NMO-2015 
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Solution: Answer: 9. Cut the square into smaller 3 × 3 block’s. Since there are 
only eight black squares, at least one of the block’s doesn’t contain any of 
them. Therefore a white square of area 9 can always be found. 

Next, we show that sometimes it is impossible to find a larger rectangle. Fig.2 
is an example. Here, one can cut out either a 3 × 3 square or a 1 × 9 
rectangle, but not any rectangle of larger area. 

         

         

         

         

         

         

         

         

         

  

1.116 2015 candies are placed along a circle and numbered 1 to 2015 
clockwise. Andriy and Olesia play the following game. In each turn, a 
player can take either 2 or 3 candies with consecutive numbers (1 and 
2015 are also considered ’’consecutive’’). The player who can’t make a 
move loses. Who has a winning strategy if Andriy plays first? 

Ukrainian NMO-2015 

Solution: Answer: Olesia. Andriy takes 2 (or 3) consecutive candies. Then 
Olesia takes 3 (or 2 ) diametrically opposite candies, so that there are 1005 
candies on both sides between the groups of taken candies. Then she just 
copies Andriy’s moves on the other part. If Andriy can make a move, she can as 
well, so she will not lose anyway. Since the game is finite, in the end she will 
win.  
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1.117 Three cyclists start off at the same time and ride along the sides 
of a triangle  along the route  →  →  Their speeds on .
each of the segments ,, are known: he first cyclist has 
speeds 12, 10 and 20 mph respectively on the three sides, the second 
one rides 15,15 and 10 mph, the third one rides 10,20 and 12 mph, the 
third one rides 10, 20 and 12 mph respectively. What can be the 
angled measure of ∠, if all three cyclist arrived back at the point 
  ?simultaneously 

NMO-2017 

Solution: Answer: 60°. Denote the sides of the triangle by ܤܣ = ܥܤ,ݔ =
ܣܥ,ݕ =  :Then the following equality must holds .ݖ

ݔ
12

+
ݕ

10
+

ݖ
20

=
ݔ

15
+
ݕ

15
+

ݖ
10

=
ݔ

10
+
ݕ

20
+

ݖ
12

 

Or  

ݔ5 + ݕ6 + ݖ3 = ݔ4 + ݕ4 + ݖ6 = ݔ6 + ݕ3 +  ݖ5

Hence, ݔ + ݕ2 − ݖ3 = 0 and 2ݔ − ݕ − ݖ = 0, which implies ݔ = ݖ and ݕ =  .ݕ

Therefore, ∆ܥܤܣ is equilateral and all its angles are equal to 60°. 

1.118  In January, Petro used to by from one to three toy cars every 
day. On February 1, he tried to make a rectangle of all his cars. When 
he arranged them into rows of 7 cars, one car remained. When he 
arranged the cars into rows of 10, there were 2 excessive cars. Can 
Petro arrange them into rows of 4 cars? 

Ukrainian NMO-2015 

Solution: Answer: yes. For some positive integers ݊,݇ we have:	7݇ + 1 =
10݊ = 2 or 7݇ = 10݊ + 1.	Therefore, we need to find a number between 29 
and 92 that ends with 1 and is divisible by 7. The minimal  such number is 21, 
which is less than 30. The next one is 91. It’s easy to check that no other 
number with these properties exists in the given interval. Therefore, Petro has 
7݇ + 1 = 91 + 1 = 92 cars.Since 92 = 4 ∙ 23, he can arrange them into 4 
columns. 
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1.119 An  ×  square is partitioned into 121 smaller  ×  square, 
4 of which are painted black, the rest being white. We cut a fully white 
rectangle (possibly, a square) out of the big  ×  square. What is 
the maximal area of the rectangle that we can attain regardless of the 
positions of the black squares? It is only allowed to cut the rectangle 
along the grid lines. 

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Answer: 25. First paint four squares black as in Fig.5.hen it is easy to 
verify that a 5 × 5 square of area 25 can be cut out, and his area is maximal 
possible. 

           
           
           
           

           
           
           
           
           
           
           

Now we shall show that this area is maximal possible in the general case. 
Assume that there is a placement of four squares for which the answer doesn’t 
exceed 24. It means that whichever rectangle of area 25 we can choose,  it will 
always contain a black square. For convenience, we can number the fields of 
the board (Fig.5). Denote rows by numbers 1 to 11 from bottom to top, and 
columns by English letters ܽ, … ,݇. We shall call a unit square gray if it cannot 
be black in any case.   

1.120 Winnie-the Pooh and Piglet play the following game. There is a 
15-inch-long stick. By his first move, Piglet breaks it into two pieces, 
then the players in turn break one of the existing pieces into two. The 
rules are that the resulting pieces must have integer length (in inces ) 
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and can’t be 1-inch-long. The player who can’t make a move loses. 
Who has a winning strategy? 

Maksym Chornyi-Ukrainian NMO-2015 

Solution: Answer: Piglet. Obviously, at the end of the game all remaining 
pieces will have length either 2 or 3 inches, and Piglet will win if their number is 
even (which means that the total number of moves was odd, thus Piglet made 
the last move). There are three possible outcomes: 

15 = 3 + 3 + 3 + 3 + 3 = 3 + 3 + 3 + 2 + 2 + 2
= 3 + 2 + 2 + 2 + 2 + 2 + 2. 

This implies that in order to win Piglet needs to ensure the existence of two 3-
inch and one 2-inch pieces (this will make the first and the third outcomes 
impossible). So, by his move he must break the stick into 5 and 10 inches. The 
first piece will be eventually divided into 2 and 3 inches. If Winnie breaks the 
10-inch stick by his next move, Piglet must break 3 inches off the longer part, 
otherwise he should just break it into 3-inch pieces and one 2-inch piece, which 
is enough for Piglet to win. 

1.121 There are 9 weights with labels 1 g, 2 g,...,9 g respectively. It’s 
known the one of the weights is lighter than the label says, while the 
other eight labels are correct. Is it possible to detect the counterfeit 
weight using scales with no additional weights no more than twice? 

Ukrainian NMO-2015 

Solution: Answer: yes. At the first move, put 1 + 4 + 9 on the left side and 
2 + 5 + 7 on the right side. If the total weights are equal, the counterfeit 
weight is among the other three. Then put on scales the combinations 3 + 4 
and 1 + 6. 

 If 3 + 4 = 1 + 6, they are genuine, hence, 8 is counterfeit. 
 If 3 + 4 < 1 + 6, then 3 if counterfeit, because it is lighter and 4 is 

known to be genuine. 
 Similarly, 3 + 4 > 1 + 6 would imply that 6 is counterfeit. 

If the total weights at the first weighing are no equal, the counterfeit weight is 
among the three lighter ones. The second move involves putting one 
potentially counterfeit weight on each side and balancing them with genuine 
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ones. For example, 1 + 5 and 4 + 2. Then we use the same arguments: the 
counterfeit one is where the total weight is less. If the scales are balanced, the 
unused weight is counterfeit. 

1.122 From the set of numbers {;; … ;} chose the maximum 
possible amount of numbers such hat the sum of any five selected 
numbers will be divisible by 15. 

Ukrainian NMO-2015 

Solution: Answer: {3; 18; 33; … ; 2013}, that contains 135 numbers. 

Let this set contain no less than 6 numbers: ܽ, ܾ, ܿ,݀, ݁,݂. Then ܽ + ܾ + ܿ +
݀ + ݁ ⋮ 15 and ܽ + ܾ + ܿ + ݀ + ݂ ⋮ 15. Hence ݁ − ݂ ⋮ 15 or ݁ ≡  .(15	݀݉)	݂
As numbers ݁,݂ are arbitrary from this set, all of them have to be equal 
modulo 15. Let every number from this set be ݇	modulo 15, then ܽ + ܾ + ܿ +
݀ + ݁ ≡ 5݇ ≡  Consequently, all numbers have to be divisible by	.(15	݀݉)	0
15, or have the remainder 3. In the first case the set contains every fifteenth 
number, beginning with 15. There are ቂଶଵହ

ଵହ
ቃ = 134 numbers, the last is 2010. 

In the second case the set contains every fifteenth number, but beginning with 
3, the last number is 2013, so the amount is ቂଶଵହ

ଵହ
ቃ + 1 = 135 numbers, 

namely {3; 18; … ; 2013}. 

1.123 Prove that number  +  has no divisors in the interval 

] − , + ] for every natural  > 2. 

Serdiuk Nazar-Ukrainian NMO-2015 

Solution: Suppose the opposite. Let ݉ଶ + ܽ ∈ [݉ଶ − 2݉,݉ଶ + 2݉] i.e. 
݉ସ + 1 ⋮ ݉ଶ + ܽ. Since: 

(݉ସ + 1,݉ଶ + 1) = (−ܽ݉ଶ + 1,݉ଶ + ܽ) = (ܽଶ + 1,݉ଶ + ܽ), then  

ܽଶ + 1 ⋮ ݉ଶ + ܽ,ܽଶ + 1 = (݉ଶ +  .ݎ(ܽ
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Let ܽ ∈ [−2݉ + 3,0], then 
మାଵ

మା
< రାଵ

మିଶାଷ
< ݉ଶ + 2݉ + 1, so ݉ସ + 1 has 

a divisor that is no less than ݉ଶ and fulfils the assumption, therefore instead of 

݉ଶ + ܽ we can examine a divisor ݉ଶ + ܾ = రାଵ
మା

, where ܾ ≥ 0. 

If ܽ = −2݉ + 2, then 4݉ଶ − 8݉ + 5 ⋮ ݉ଶ − 2݉ + 2 so 3 ⋮ ݉ଶ − 2݉ + 2 
which is impossible in case of ݉ > 1. 

If ܽ = −2݉ + 1, then 4݉ଶ − 4݉ + 2 ⋮ (݉ − 1)ଶ ⋮ ݉ − 1, thus 2 ⋮ ݉ −
1,݉ ∈ {2,3}. In case of ݉ = 2 and ݉ = 3:݉ସ + 1 = 17 and ݉ସ + 1 = 2 ∙
41 − none of these numbers fulfils the condition. 

If ܽ = −2݉, then 1 ⋮ ݉ is a contradiction. 

Hus, if number ݉ସ + 1 has a divisor ݉ଶ + ܽ, where ܽ ∈ [−2݉, 2݉], then the 
number ݉ସ + 1 has a divisor ݉ଶ + ܾ, where ܾ ∈ [0,2݉]. It is also clear that 
ܾ ≠ 0. In such case,  

4݉ଶ + 1 ≥ ܾଶ + 1 = (݉ଶ + ݎ(ܾ ≥ ݉ଶݎ, so ݎ ≤ 3. 

Case ݎ = 3: ܾଶ + 1 = 3(݉ଶ + ܾ) −it is impossible, because ܾଶ + 1 is not 
divisible by 3. 

Case ݎ = 2: ܾଶ + 1 = 2(݉ଶ + ܾ), (ܾ − 1)ଶ = 2݉ଶ −impossible. 

Case ݎ = 1: ܾଶ − ܾ + 1 = ݉ଶ,ܾݐݑ	ܾଶ > ܾଶ − ܾ + 1 = ݉ଶ > (ܾ − 1)ଶ, so his 
case is also impossible. Thus, we have the contradiction with the supposition, 
so the statement is proved.  

1.124 We color each unit square of a ૡ × ૡ table into green or blue 
such that there are ܉ green unit squares in each  ×  square and ܊ 
green unit squares in each  ×  rectangle. Find all possible values of 
 .(࢈,ࢇ)

Le Anh Vinh-Saudi Arabia NMO-2015 

Solution: By tiling our 8 × 8 table by eight 2 × 4 rectangles like in Tiling (1) 
we find that the total number of green unit squares in the table is 8ܾ. 

By tiling our 8 × 8 able by four 3 × 3 squares, three 2 × 4 rectangles and one 
2 × 2 square, like in Tiling (2), we find that the total number of green unit 
squares in the total table is 4ܽ + 3ܾ +  is the number of green unit ݔ where ,ݔ
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square in the 2 × 2 square in the left upper corner. Notice that by just rotating 
our tiling (2) so that the 2 × 2 square occupies at each time the four corners of 
the table, we deduce that the four 2 × 2 unit squares in the four corners, all 
have the same number of green unit squares ݔ. 

Finally, by tilling our 8 × 8 table by six 2 × 4 rectangles and four 2 × 2 
squares, like in Tiling (3), we find that the total number of green unit squares in 
the table is 6ܾ +  ݔ4

 

Putting together all these totals, we obtain the relations 8ܾ = 4ܽ + 3ܾ + ݔ =
6ܾ + ܾ from which we deduce that	,ݔ4 = ݔand 9 ݔ2 = 4ܽ. Since 0 ≤ ܽ ≤ 9, 
either ܽ = 0 and ܾ = 0 or ܽ = 9 and ܾ = 8. In other words, either we color the 
whole table or we don’t  color at all. 

1.125 Find the number of 6-tuples (ࢇ,ࢇ,ࢇ,ࢇ,ࢇ,ࢇ) of distinct 
positive integers satisfying the following two conditions: 

(a) ࢇ + ࢇ + ࢇ + ࢇ + ࢇ + ࢇ = ; 

(b) We can write ࢇ,ࢇ,ࢇ,ࢇ,ࢇ,ࢇ on sides of a hexagon such that 
after a finite number of time choosing a vertex of the hexagon and 
adding 1 to the two numbers written an two sides adjacent to the 
vertex, we obtain a hexagon with equal numbers on its sides. 

Le Anh Vinh-Saudi Arabia NMO-2017 

Solution: We label the vertex of the hexagon by 1,2,3,4,5,6 and suppose that 
six numbers are written in the order ܽ, ܾ, ܿ,݀, ݁,݂ on the edges 
(1,2), (2,3), (3,4), . . , (6,1), respectively. 
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We first notice that by choosing a vertex of the hexagon and adding 1 to the 
two numbers written on two adjacent sides to the vertex, the difference 
(ܽ + ܿ + ݁) − (ܾ + ݀ + ݂) is an invariant. Thus, if we want to obtain a 
hexagon with equal numbers on its sides, we must have ܽ + ܿ + ݁ = ܾ + ݀ +
݂ at the beginning. 

We will show that it is sufficient. Let ܰ be a big integer, for example, we can 
take ܰ > 30. 

We choose the vertices by ܰ − ݂,ܰ − ܾ,ܰ − ܿ and ܰ − ݁ times, respectively. 
Then, we obtain a hexagon with six numbers ܽ + 2ܰ − ܾ − ݂,ܰ,ܰ,݀ + 2ܰ −
݁ − ܿ,ܰ,ܰ. 

Since ܽ + ܿ + ݁ = ܾ + ݀ + ݂, we have ܽ + 2ܰ − ܾ − ݂ = ݀ + 2ܰ − ݁ − ܿ =
ܯ > ܰ (since ܰ > 30 = ܽ + ܾ + ܿ + ݀ + ݁ + ݂).	We now can choose the 
vertices 3,6 for ܯ− ܰ times each then we obtain a hexagon with numbers ܯ 
on all of its sides. 

Now, we count how many 6-tuples (ܽ, ܾ, ܿ,݀, ݁,݂) of distinct positive integers 
with ܽ + ܿ + ݁ = ܾ + ݀ + ݂ = 15. 

We list all triples of distinct positive integers with sum 15: 
(1,2,12), (1,3,11), (1,4,10), (1,5,9), (1,6,8), (2,3,10), (2,4,9), (2,5,8), (2,6,7), (3,4,8), (3,5,7), (4,5,6)  

We then check that there are exactly 19 times we can pair these triples to 
obtain 6 distinct numbers. Since we can permute the numbers on each tuple, 
the total number of 6-tuples satisfying the given conditions 19 × 6!. 

1.126 Given 2015 subsets ,, … , of the set {,, , … ,} 
such that || ≥  for every  ≥  and ห ∩ ห ≥  for every 
 ≤ ܑ < ݆ ≤ 2015. Prove that  =  is the smallest number of colors 
such that we can always color the elements of the set {,, … ,} 
by  colors with the property that the subset  has at least two 
elements of different colors for every  ≥ . 

Le Anh Vinh-Saudi Arabia NMO-2015 

Solution: Consider the collection: 
ଵܣ = ଶܣ,{1,2} = ܣ,{2,3} = {1,3}, …  ଶଵହ be any 2011 subsets ofܣ,
{1,2, … ,1000} that contain all 1,2,3. 
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One can check that this collection satisfies the given condition. For any 2-
coloring of the set {1,2, … ,1000}, at least one of ܣଵ,ܣଶ,ܣଷ will contain two 
elements of the same color. Hence, we need more than 2 colors. Now we show 
that we always can color {1,2, … ,1000} by 3 colors such that the set ܣ  
contains at least two elements of different color for all ݅. We choose a set ܣబ 
with least number of elements. We color one element of ܣబ by red and all the 
rest by blue. We color by green all the elements {1,2, … ,1000} which do not 
belong to ܣబ. It is clear that ܣబ contains two elements of different color. For 
any subset ܣ  with ݅ ≠ ݅, ܣ| ∩ |ଵܣ ≥ 1 so ܣ  contains at least one red or blue 
element. Moreover, because |ܣ| ≥ หܣబห, either ܣ  contains another element 
of ܣబ with the other color or contains a green element. Hence, the subset ܣ  
contains two elements of different color. 

1.127 Prove that there exist infinitely many non prime positive 
integers  such that ૠି − ିis divisible by .  

Le Anh Vinh-Saudi Arabian TST-2015 

Solution: We will look for integers of the form ݊ = 7 − 3  with ܽ dividing 
݊ − 1. Clearly, if ܽ exist then ݊ = 7 − 3  divides 7ିଵ − 3ିଵ. 

Let ܽ = 3  for ݊ ≥ 1. We have ݊ = 7 − 3 ≡ (−1)ଷೝ − 3ଷೝ ≡  .(8	݀݉)	4

We deduce that ݊ is a composite number. On the other hand, because 3 divides 
7-1, we have from the Lifting The Exponent that ݒଷ(7 − 1) = −ଷ(7ݒ 1) +
(ܽ)ݒ = ݎ + 1. We deduce that ܽ = 3  divides 7ଷೝ − 1 and therefore it divides 
݊ − 1 = 7ଷೝ − 1 + 3ଷೝ . But there are infinitely many such ܽ. This solves the 
problem. 

1.128 We have 10 balls in a bowl, some of them are blue, some of 
them are yellow and the others are green. They can be put in a line in 
360 different ways. At most how many blue balls are there in the 
bowl? 

Slovenia NMO-2013 

Solution: Denote the numbers of blue, yellow and green balls by ܾ,ݕ and ݃, 
then ܾ + ݕ + ݃ = 10. 
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The balls can be put in a line in ଵ!
!௬!!

 different ways. So,  ଵ!
!௬!!

= 360. 

This equality can be rewritten as 10 ∙ 9 ∙… ∙ (ܾ + 1) = 360 ∙ !ݕ ∙ ݃!. 

This implies 10 ∙ 9 ∙ … ∙ (ܾ + 1) ≥ 360 = 10 ∙ 9 ∙ 4, so ܾ + 1 ≤ 8, or ܾ ≤ 7. It, 
for example, we have ܾ = ݕ,7 = 2 and ݃ = 1, then ଵ!

!௬!!
= ଵ!

!ଶ!ଵ!
= ଵ∙ଽ∙଼

ଶ
=

360. There can be at most 7 blue balls in the bowl. The correct answer is ܦ. 

1.129 Find all quadruples of non-zero digits, ࢈,ࢇ,  such that ࢊ and ࢉ

തതതതതതത࢈ࢇ  − ࢊࢉതതതതതതത =  .തതതതതതത࢈ࢇࢊࢉ

Slovenia NMO-2013 

Solution: Rewrite the equation as ܾܿ݀ܽതതതതതതത + 13ܿ݀തതതതതതത = ܾܽ20തതതതതതത. Since ܾ and ݀ are 
non-zero digits the equation for the ones is ܾ + ݀ = 10. Substracting this on 
both sides of the equation we get ܿ݀ܽ0തതതതതതത + 13ܿ0തതതതതതത = ܾܽ10തതതതതതത. Dividing the equation 
by 10 we obtain ܿ݀ܽതതതതത + 13ܿതതതതത = ܾܽ1തതതതത. Since ܽ and ܿ are non-zero digits, their sun 
cannot be equal to 1, so the equation for the ones yields ܽ + ܿ = 11. Once  
more we substract this expression from both sides of the equation and divide 
by 10. We get ܿ݀തതത + 13തതതത = ܽ(ܾ − 1)തതതതതതതതതതത since ܾ − 1 ≥ 0. We consider two cases. 

If ݀ ≤ 6, then ݀ + 3 = ܾ − 1 and ܿ + 1 = ܽ. We can conclude that ܽ = 6, ܾ =
7, ܿ = 5 and ݀ = 3. If on the other hand ݀ ≥ 7, then ݀ + 3 = 10 + (ܾ − 1) 
and ܿ + 1 = ܽ − 1. But in this case we get a contradiction ܿ = ଽ

ଶ
. Hence, the 

only solution is (ܽ, ܾ, ܿ,݀) = (6,7,5,3). 

1.130 Zan wrote a sequence of four positive real numbers. The first 
term in the sequence was the number 3, and the last term was the 
number 9. The first three terms formed a geometric sequence, and the 
last three terms formed an arithmetic sequence. Determine all four 
terms of Zan’s sequence. 

Slovenia NMO-2013 

Solution: Denote the second and the third term of Zan’s sequence by ݔ and ݕ. 
Then 3, ଶݔ is a geometric sequence and ݕ,ݔ = ,ݕ,ݔ On the other hand .ݕ3 9 is 
an arithmetic sequence, so 2ݕ = ݔ + 9.	We may rewrite the second equation 



DANIEL SITARU            MARIAN URSĂRESCU              FLORICĂ ANASTASE 
 

97 WORLD’S  MATH  OLYMPIADS 
 

as ݕ = ௫ାଽ
ଶ

.		Plugging this into the first equation and rearranging we get 
ଶݔ2 − ݔ3 − 27 = 0, or (2ݔ − ݔ)(9 + 3) = 0. Since ݔ is positive we have 
ݔ = ଽ

ଶ
. From here we get ݕ = ଶ

ସ
.	Zan’s sequence is ଷ,ଽ

ଶ
, ଶ
ସ

, 9. 
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ALGEBRA 

 

2.1 Determine all plynomyals (࢞)ࡼ ∈ ℝ[࢞] satisfying the following 
two conditions: 
a) ࡼ(ૠ) =  and  
b)  ((࢞)ࡼ + ) = ࢞)ࡼ + ) for all real numbers ࢞. 

Walter Janous-Austrian NMO-2017 

Solution: Letting ܳ(ݔ) ≔ (ݔ)ܲ + 1 we get the two new conditions 
ܳ(2017) = 2017 and  ܳ(ݔଶ + 1) = ܳଶ(ݔ) + 1, ݔ ∈ ℝ. 
We now define the sequence (ݔ)ஹ recursively by ݔ = 2017 and 
ାଵݔ = ଶݔ + 1,݊ ≥ 0. A straightforward induction yields ܳ(ݔ) = ݊,ݔ ≥ 0, 
because  ܳ(ݔାଵ) = ଶݔ)ܳ + 1) = ܳଶ(ݔ) + 1 = ଶݔ + 1 =  .ାଵݔ
Because of ݔ < ଵݔ < ଶݔ < ⋯ the two polynomials ܳ(ݔ) and ݅݀(ݔ) =  ݔ
coincide at infinitely many arguments ݔ. Therefore, ܳ(ݔ) =  and thus the ݔ
unique polynomial satisfying the two conditions of our problem is 
(ݔ)ܲ  = ݔ − 1. 
 

,ࢠ 2.2 ,ࢠ ࢠ ∈ ℂ∗, are different in pairs, |ࢠ| = |ࢠ| = |ࢠ| =  

,(ࢠ),(ࢠ),(ࢠ)


ૡ− ࢠ
ࢠ
− ࢠ
ࢠ
− ࢠ
ࢠ
− ࢠ
ࢉ࢟ࢉࢠ

=

 

Prove that:  =  =  .

Marian Ursărescu 

Solution (George Florin Şerban) 

ଵݖ = ଵߠݏܿ + ,ଵߠ݊݅ݏ݅ ଶݖ = ଶߠݏܿ + ,ଶߠ݊݅ݏ݅ ଷݖ = ଷߠݏܿ +  ଷߠ݊݅ݏ݅
We have: ߙ = ௭భ

௭మ
+ ௭మ

௭భ
+ ௭భ

௭య
+ ௭య

௭భ
 

= ଵߠ)ݏܿ − (ଶߠ + ଵߠ)݊݅ݏ݅ − (ଶߠ + ଶߠ)ݏܿ − (ଵߠ + ଶߠ)݊݅ݏ݅ − (ଵߠ
+ ଵߠ)ݏܿ − (ଷߠ + ଵߠ)݊݅ݏ݅ − (ଷߠ + ଷߠ)ݏܿ − (ଵߠ
+ ଷߠ)݊݅ݏ݅ −  (ଵߠ

= ଵߠ)ݏܿ − (ଶߠ + ଵߠ)݊݅ݏ݅ − (ଶߠ + ଵߠ)ݏܿ − (ଶߠ − ଵߠ)݊݅ݏ݅ − (ଶߠ
+ ଵߠ)ݏܿ − (ଷߠ + ଵߠ)݊݅ݏ݅ − (ଷߠ + ଵߠ)ݏܿ − (ଷߠ
− ଵߠ)݊݅ݏ݅ − (ଷߠ = ଵߠ)ݏ2ܿ − (ଶߠ + ଵߠ)ݏ2ܿ −  (ଷߠ

So: 
8− ߙ = 8 − ଵߠ)ݏ2ܿ − (ଶߠ − ଵߠ)ݏ2ܿ −  (ଷߠ
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= 3 + ଶߠݏଵܿߠݏ2ܿ + ଶߠ݊݅ݏଵߠ݊݅ݏ2 + ଷߠݏଶܿߠݏ2ܿ + ଷߠ݊݅ݏଶߠ݊݅ݏ2
+ ଷߠݏଵܿߠݏ2ܿ +  ଷߠ݊݅ݏଵߠ݊݅ݏ2

= ଵߠݏܿ) + ଶߠݏܿ + ଷ)ଶߠݏܿ + ଵߠ݊݅ݏ) + ଶߠ݊݅ݏ + ଷ)ଶߠ݊݅ݏ ≥ 0 
Let: 

ݔ = ଵߠ)ݏܿ	 − ;(ଶߠ ݕ = ଶߠ)ݏܿ − ;(ଷߠ ݖ = ଵߠ)ݏܿ −  (ଷߠ

3 + ݔ2 + ݕ2 + ݖ2 ≥ 0 ⇒ ݔ + ݕ + ݖ ≥ −
3
2

 


1

8 − ଵݖ
ଶݖ
− ଶݖ
ଵݖ
− ଵݖ
ଷݖ
− ଷݖ
ଵ௬ݖ

= 
1

8 − ݔ2 − ݖ2
௬

݉ݎݐݏ݃ݎ݁ܤ
≥

(1 + 1 + 1)ଶ

∑ 8− ݔ2 − ௬ݖ2
 

=
9

24 − ݔ∑4
≥

3
10

 

Equality for:  8− ݔ2 − ݕ2 = 8− ݔ2 − ݖ2 = 8− ݕ2 − ݖ2 ⇔ ݔ = ݕ =  ݖ
ܤܣ = ଵݖ| − |ଶݖ = ଵߠݏܿ)| − (ଶߠݏܿ + ଵߠ݊݅ݏ)݅ −  |(ଶߠ݊݅ݏ

= ඥ(ܿߠݏଵ − ଶ)ଶߠݏܿ + ଵߠ݊݅ݏ) −  ଶ)ଶߠ݊݅ݏ
= ඥ2− ଶߠݏଵܿߠݏ2ܿ −  ଶߠ݊݅ݏଵߠ݊݅ݏ2

= ඥ2 − ଶߠݏଵܿߠݏܿ)2 + (ଶߠ݊݅ݏଵߠ݊݅ݏ = ඥ2 − ଵߠ)ݏ2ܿ − (ଶߠ = √2 −  ݔ2
Analogous:ܥܤ = ඥ2− ܥܣ.ݕ2 = √2−  ݖ2

 
2.3 If  < ࢇ ≤ ࢇ ≤. . .≤ ,ࢇ > 0, then prove: 

ࢇ ∙ ࢇ


൭

ࢇ



ୀ

൱


≤൬
ࢇ + ࢇ
ࢇ

− ൰


ୀ

 

Florică Anastase 

Solution: 

0 ≥ 
1
ܽ

∙ (ܽଵ − ܽ)(ܽ − ܽ)


ୀଵ

= 

= 
1
ܽ

∙ (ܽଵ ∙ ܽ − ܽ ∙ ܽ − ܽଵ ∙ ܽ + ܽଶ)


ୀଵ

= 

= ൬
ܽଵ ∙ ܽ
ܽ

− ܽଵ − ܽ + ܽ൰


ୀଵ

= ൬
ܽଵ ∙ ܽ
ܽ

൰


ୀଵ

− ݊(ܽଵ + ܽ) + ܽ



ୀଵ

⇒ 

ܽଵ ∙ ܽ ∙ 
1
ܽ



ୀଵ

≤ ൭݊(ܽଵ + ܽ) −ܽ



ୀଵ

൱	 ≤⏞
ିீ

ቆ݊(ܽଵ + ܽ) − ݊ටෑܽ


ቇ 
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ܽଵ ∙ ܽ
݊

∙ 
1
ܽ



ୀଵ

≤ ܽଵ + ܽ − ටෑܽ


≤⏞
ିு

ܽଵ + ܽ −
݊

∑ 1
ܽ


ୀଵ

 

ܽଵ ∙ ܽ
݊

∙ ൭
1
ܽ



ୀଵ

൱
ଶ

≤ (ܽଵ + ܽ) 
1
ܽ



ୀଵ

− ݊ 

ܽଵ ∙ ܽ
݊

∙ ൭
1
ܽ



ୀଵ

൱
ଶ

≤ ൬
ܽଵ + ܽ
ܽ

− 1൰


ୀଵ

 

 

2.4 In ∆ the following relationship holds: 

ࢇ


࢈
+
࢈



ࢉ
+
ࢉ



ࢇ
≥  √࢙

 Marian Ursărescu 

Solution (Rahim Shahbazov) 

݉
ଶ

݉
+
݉
ଶ

݉
+
݉
ଶ

݉
≥ 3√ݏ … (1) 

Lemma: 

,ݕ,ݔ ݖ > 	:ℎ݁݊ݐ	0
ଶݔ

ݕ
+
ଶݕ

ݖ
+
ଶݖ

ݔ
≥ 3 ∙ ඨ

ଶݔ + ଶݕ + ଶݕ

3
(ଵ)
ሳሰ 

ܵܪܮ ≥ 3 ∙ ඨ
݉
ଶ +݉

ଶ +݉
ଶ

3
≥ 3√ݏ ⇒ 3(ܽଶ + ܾଶ + ܿଶ) ≥ (ܽ + ܾ + ܿ)ଶ 

Prove lemma: 

ଶݔ

ݕ
+
ଶݕ

ݖ
+
ଶݖ

ݔ
≥

ଶݔ) + ଶݕ + ଶ)ଶݖ

ݕଶݔ + ݖଶݕ + ݔଶݖ
 

≥
ଶݔ) + ଶݕ + ଶ)ଶݖ

ඥ(ݔଶ + ଶݕ + ଶݕଶݔ)(ଶݖ + ଶݖଶݕ + (ଶݕଶݖ
 

≥ 	3 ∙ ඨ
ଶݔ + ଶݕ + ଶݕ

3
⇒ 
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ଶݔ) + ଶݕ + ଶ)ଶݖ ≥ ଶݕଶݔ + ଶݖଶݕ +  ଶݕଶݖ

2.5 If 	࢈,ࢇ, ,,ࢉ > 0 then: 


ૡࢇ

ࢇ + ࢉ࢈ ≤ ) + ( ൬

 +


൰

ቌ
ࢇ
ࢉ࢈

ࢉ࢟ࢉ

ቍ
ࢉ࢟ࢉ

 

Florică Anastase 

Solution: ݉ݎܨ:	(݉ܽଶ + ܾ݊ܿ)ଶ ≥ 4݉݊ܽଶܾܿ → 
మା

≤ మା
ସ

→ 


ܽ

݉ܽଶ + ܾ݊ܿ
≤

1
4݉݊

௬


݉ܽଶ + ܾ݊ܿ

ܾܽܿ
௬

≤
1

4݉݊


(݉ + ݊)ܽଶ

ܾܽܿ
௬

=
݉ + ݊
4݉݊


ܽ
ܾܿ

௬

			(݅) 

݉ + ݊
4݉݊

=
݉ + ݊

4
∙

1
݉݊

≤⏞
ீெ݉ + ݊

4
∙ ൬
݉ + ݊
2݉݊

൰
ଶ

=
݉ + ݊
4݉ଶ݊ଶ

∙ ൬
݉ + ݊

2
൰
ଶ
≤⏞
ீெ݉ + ݊

8
∙ ቆ
݉ଶ + ݊ଶ

݉ଶ݊ଶ
ቇ				(݅݅) 

From (i),(ii) we have: 


8ܽ

݉ܽଶ + ܾ݊ܿ
≤ (݉ + ݊) ൬

1
݉ଶ +

1
݊ଶ
൰ቌ

ܽ
ܾܿ

௬

ቍ
௬

 

 

2.6 If	ࢠ,࢟,࢞ > 0, ݖݕݔ = 1, ݊ ∈ (,]	 then prove: 


+࢟࢞) +ࢠ࢞)(ࢠ (࢟

࢞) + )(ࢠ࢟ + ࢟࢞) + ࢠ࢞)(ࢠ + ((࢟ ≤



ࢉ࢟ࢉ

 

Florică Anastase 

Solution: 


ݕݔ) + ݖݔ)(ݖ + (ݕ

ݔ) + 1)(ݖݕ + ݕݔ)݊ + ݖݔ)(ݖ + ((ݕ
௬

= 
ݕݔ)ݖݕݔ + ݖݔ)(ݖ + (ݕ

ݔ)ݔ + ݖݕ)(ݖݕ + ݕݔ)ݖݕ݊ + ݖݔ)(ݖ + ((ݕ
௬

	 = 
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= 
ଶݕ)ݔ + ଶݖ)(1 + 1)

ଶݔ) + ݖݕ)(1 + ଶݕ)݊ + ଶݖ)(1 + 1))
௬

= 
ݔ

1 + ଶݔ
ݕ

1 + ଶݕ ∙
ݖ

1 + ଶݖ + ݊௬

					(1) 

:ݐ݁ܮ ܽ =
ݔ

1 + ଶݔ
, ܾ =

ݕ
1 + ଶݕ

, ܿ =
ݖ

1 + ଶݖ
	ܽ݊݀	ܽ, ܾ, ܿ ∈ ൬0,

1
2
൰	 

	:ݓℎݏ	ݐݏݑ݉	ܹ݁
ܽ

ܾܿ + ݊
+

ܾ
ܿܽ + ݊

+
ܿ

ܾܽ + ݊
≤

2
݊
					(2) 

0	ݎ݁݀݅ݏ݊ܿ	݊ܽܿ	ܹ݁ ≤ ܽ ≤ ܾ ≤ ܿ ≤
1
2

→⏞
(ଵ),(ଶ)

 

ܽ
ܾܿ + ݊

+
ܾ

ܿܽ + ݊
+

ܿ
ܾܽ + ݊

≤
ܽ

ܾܽ + ݊
+

ܾ
ܾܽ + ݊

+
ܿ

ܾܽ + ݊
≤⏞
ழଵ ܽ + ܾ + 1

ܾܽ + ݊
≤⏞
? 2
݊
↔ 

݊(ܽ + ܾ + 1) ≤ 2ܾܽ + 2݊ ↔ (2 − ݊)ܾܽ + ݊(1 − ܽ)(1− ܾ)

≥ ,ܽ	ݎ݂	݁ݑݎݐ	0 ܾ, ܿ ∈ ൬0,
1
2
൰ ,݊ ∈ (0,2] 

 
2.7 If	࢈,ࢇ, ࢉ > 1, then: 

ࢇܗܔା࢈൫ + ା൯(࢈࢈ + (ାࢉࢉ ≥ (ࢇ + ࢈)࢈ିࢉ(࢈ + ࢉ)ࢉିࢇ(ࢉ + ࢇି࢈(ࢇ
ࢉ࢟ࢉ

 

Florică Anastase 

Solution: From Bernoulli’s inequality, we have: 

	ቐ
ܽାଵ = (1 + ܽ − 1)ାଵ ≥ ܽଶ

ܾାଵ = (1 + ܾ − 1)ାଵ ≥ ܾଶ

ܿାଵ = (1 + ܿ − 1)ାଵ ≥ ܿଶ

→ ቐ
(1 + ܽାଵ)൫1 + ܾାଵ൯ ≥ (1 + ܽଶ)(1 + ܾଶ) ≥ (ܽ + ܾ)ଶ

൫1 + ܾାଵ൯(1 + ܿାଵ) ≥ (1 + ܾଶ)(1 + ܿଶ) ≥ (ܾ + ܿ)ଶ

(1 + ܿାଵ)(1 + ܽାଵ) ≥ (1 + ܿଶ)(1 + ܽଶ) ≥ (ܿ + ܽ)ଶ
 

݈݃ା൫1 + ܾାଵ൯(1 + ܿାଵ) ≥݈݃ା(ܾ + ܿ)ଶ
௬௬

= 

= 2݈݃ା(ܾ + ܿ) ≥⏞
ିீ

6 ∙ ඨෑ݈݃ା(ܾ + ܿ)
௬

య = 6					(݅)
௬

 

∴ ௭ݖ௬ݕ௫ݔ ≥ ௬ݖ௫ݕ௭ݔ ,ݕ,ݔ∀, ݖ > 1 ↔ ݖ) − ݔ݈݊(ݔ + ݔ) − ݕ݈݊(ݕ + ݕ) − ݖ݈݊(ݖ
≤ 0 

1	݂ܫ ≤ ݔ ≤ ݕ ≤ ݖ → ݔ݈݊) ≤ ݕ݈݊ ≤ ,ݖ݈݊ ݖ − ݔ ≥ ݔ − (ݕ ⇒
௬௦௩ᇱ௦

 

ݖ) − ݔ݈݊(ݔ + ݔ) − ݕ݈݊(ݕ ≤
1
2

ݖ) − (ݕ (ݕݔ)݈݊ = ݖ) − ݈݊(ݕ ඥݕݔ 
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→ ݖ) − ݔ݈݊(ݔ + ݔ) − ݕ݈݊(ݕ + ݕ) − ݖ݈݊(ݖ ≤ ݖ) − ݈݊(ݕ ඥݕݔ + ݕ) − ݖ݈݊(ݖ

= ݖ) − ݈݊(ݕ
ඥݕݔ
ݖ

≤ 0 ∴ 

:݉ݎܨ ݔ = ܾ + ݕ,ܿ = ܿ + ܽ, ݖ = ܽ + ܾ → (ܽ + ܾ)ି(ܾ + ܿ)ି(ܿ + ܽ)ି
≤ 1			(݅݅) 

,(݅)	݉ݎܨ (݅݅) →݈݃ା൫1 + ܾାଵ൯(1 + ܿାଵ)
௬

≥ 6(ܽ + ܾ)ି(ܾ + ܿ)ି(ܿ + ܽ)ି 
2.8 Solve the system: 

ࢇ + ࢈ + ࢉ = ,ࢇ + ࢈ + ࢉ = ,ࢇ + ࢈ + ࢉ = ࢉ࢈ࢇ 

Finbar Holland-Ireland SHL-2017 

Solution: As is usual with problems of this kind, we eliminate one of the 
“unknowns”, therebody reducing the number of equations as well. 
So, suppose ܽ, ܾ, ܿsatisfy the given equations, and eliminate ܿ, say.Then, from 
the first, we deduce that 
ܽଷ + ܾଷ + ܿଷ = ܽଷ + ܾଷ − (ܽ + ܾ)ଷ = ܽଷ + ܾଷ − (ܽଷ + 3ܽଶܾ + 3ܾܽଶ + ܾଷ)

= −3ܾܽ(ܽ + ܾ) = 3ܾܽܿ. 
This and the third equation forces ܾܽܿ = 0. Hence, one ܽ, ܾ, ܿ is zero. Say 
ܿ = 0. Then, by the first and second equations, ܽ = −ܾ, and 1 = 2ܽଶ. Thus one 
solutions is ܽ = ± ଵ

√ଶ
, ܾ = ± ଵ

√ଶ
, ܿ = 0 and any permutation of this triple is a 

solution. Conversely, every such triple is a solution. 
 
2.9 Prove for all complex numbers ࢠ that: 

|ࢠ| + |ࢠ − | ≥ , 

with equality if ࢠ = . 

Finbar Holland-Ireland SHL-2017  

Solution: If |ݖ| = 1, then |ݖ|ଶ + ݖ|2 − 1| ≥ 1 + ݖ|2 − 1| ≥ 1, with equality if 

ݖ = 1.	If |ݖ| < 1 then |ݖ − 1| ≥ ห|ݖ|− 1ห = 1 −   and so ,|ݖ|

ଶ|ݖ| + ݖ|2 − 1| − 1 ≥ ଶ|ݖ| + 2(1− −(|ݖ| 1 = |ݖ|) − 1)ଶ > 0 
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2.10 Suppose ࢜,࢛ are real numbers and ࢝ = ࢛ +  is a complex ࢜

number. Show that the quadratic ࢞ − ࢞+  has precisely one real ࢝

root if ࢜ + ࢛ = . 

Finbar Holland-Ireland NMO-2017 

Solution: Suppose ݒଶ + ݑ4 = 0, and let ݎ = ௩
ଶ
. Then, ݎ is real and  

ଶݎ − ݎ2݅ =
ଶݒ

4
− ݒ݅ = ݑ− − ݒ݅ =  ,ݓ−

whence, as ݓ = ݑ + ݓ and so ݒ݅ ഥݓ+ = ݓ and ݑ2 ഥݓ− = ,ݒ2݅ ଶݎ2 + ݑ2 = 0, 
ݎ4݅− + ݒ2݅ = 0. Therefore, ݒଶ = ଶݎ4 =  .Hence, the result .ݑ4−
 
2.11 If	ࢇ > 1	, ݅ = , + തതതതതതതതതത	, ∈ ℕ, prove: 

ࢇࢍ
 ࢇࢇ) ∙ … ∙ (ାࢇ ≥ ା

ࢉ࢟ࢉ

 

Florică Anastase 

Solution: 

భ݈݃
 (ܽଶܽଷ ∙ … ∙ ܽାଵ) = ൫݈݃భ ܽଶ + భ݈݃ ܽଷ +⋯+ భ݈݃ ܽାଵ൯


≥⏞

ெିீெ

 
≥ ݊ ∙ భ݈݃ ܽଶ భ݈݃ ܽଷ ∙… ∙ భ݈݃ ܽାଵ 

݈݃భ
 (ܽଶܽଷ ∙ … ∙ ܽାଵ) ≥ ݈݊݃భ ܽଶ భ݈݃ ܽଷ ∙ … ∙ భ݈݃ ܽାଵ ≥⏞

ெିீெ

௬௬

 

≥ ݊ ∙ ݊ ∙ ට݈݃భ ܽଶ మ݈݃ ܽଵ ∙ … ∙ ݈݃ ܽାଵ శభ݈݃ ܽ
 = ݊ାଵ 

2.12 If 	܉,܉, … ܖ܉, > ,	then: 

ෑቆ+ ܑ܉
ାܑ܉

శܑ܉
ቇ

ܖ

ܑୀ

≥ ܖ ൭ෑܑ܉

ܖ

ܑୀ

൱


∑ܖ ܖܑ܉

ܑస

 

Florică Anastase 

Solution: 

1 + ܽ
ଵା = 1 + (1 + ܽ − 1)ଵା ≥⏞

௨

1 + ܽଶ → 
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1 + ܽ
ଵା

భశೌ
≥ 1 + ܽ

ଵା
మ

≥⏞
ିீ

2ܽ
 →ෑቆ1 + ܽ

ଵା
భశೌ

ቇ


ୀଵ

≥ 2ෑܽ




ୀଵ

… … (1°) 

ෑܽ	:ݓℎݏ	ݐݏݑ݉	ܹ݁




ୀଵ

≥ ൭ෑܽ



ୀଵ

൱

ଵ
∑ 

సభ

↔݈ܽ݃(ܽ)


ୀଵ

≥
1
݊
൭ܽ



ୀଵ

൱൭݈݃(ܽ)


ୀଵ

൱  		,݁ݑݎݐ	

Cebyshev inequalities for sequences (ܽ)ஹଵ,  ஹଵ......൫2°൯((ܽ)	݈݃)
From (1°), (2°) we have: 

ෑቆ1 + ܽ
ଵା

భశೌ
ቇ



ୀଵ

≥ 2 ൭ෑܽ



ୀଵ

൱

ଵ
∑ 

సభ

 

 

 2.13 If ࢇ,ࢇ, … ࢇ, > ,0 ∈ ℕ, > 1. Then: 

ܗܔାࢇࢇ൫ + ࢇ
ାࢇ൯൫ + ࢇ

ାࢇ൯
ࢉ࢟ࢉ

≥  

Florică Anastase 

Solution: 

1 + ܽ
ଵା = 1 + (1 + ܽ − 1)ଵା ≥⏞

௨

1 + ܽଶ ⇒ 

൫1 + ܽ
ଵା൯ ቀ1 + ܽ

ଵାೕቁ ≥ ൫1 + ܽଶ൯൫1 + ܽ
ଶ൯ ≥ (1 + ܽ ܽ)ଶ ⇒ 

 logଵାభమ൫1 + ܽଶ
ଵାమ൯൫1 + ܽଷ

ଵାయ൯
௬

≥ 2 logଵାభమ(1 + ܽଶܽଷ) ≥⏞
ିீ

௬

 

≥ 2݊ ඨෑ logଵାభమ(1 + ܽଶܽଷ
௬

 ) ≥ 2݊ 

2.14 If 	࢈,ࢇ, ࢉ > 0,	 then: 

൫ + ൯ࢇశࢇାࢇ ቀ+ ቁ࢈శ࢈ା࢈ ൫ + ൯ࢉశࢉାࢉ ≥ ૡࢇࢉࢉ࢈࢈ࢇ 
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Florică Anastase 

Solution: 

1 + ܽଵା = 1 + (1 + ܽ − 1)ଵା ≥⏞
௨

1 + ܽଶ	ܽ݊݀	݈ܽ݊ݏݑ݃ 
	1 + ܾଵା ≥ 1 + ܾଶ , 1 + ܿଵା ≥ 1 + ܿଶ 

1 + ܽଵାభశೌ ≥ 1 + ܽଵାమ ≥⏞
ିீ

1 + ܽଶ ≥⏞
ିீ

2ඥܽଶ
= 2ܽ  ݏݑ݈݃ܽ݊ܽ	݀݊ܽ	

1 + ܾଵାభశ್ ≥ 2ܾ , 1 + ܿଵାభశ ≥ 2ܿ 
൫1 + ܽଵାభశೌ൯ ቀ1 + ܾଵାభశ್ቁ ൫1 + ܿଵାభశ൯ ≥ 8ܾܽܿ … … (1) 

ܾܽܿ≥⏞
?

ܾܽܿ ↔ (ܽ − ܾ) (ܽ)݈݃ + (ܾ − ܿ) (ܾ)݈݃ + (ܿ − ܽ) (ܿ)݈݃ ≥ 0 
∴ 0	ݐ݁ܮ < ܽ ≤ ܾ ≤ ܿ → ܽ − ܾ < ܾ − ܿ	 

ܽ݊݀ (ܽ)݈݃ ≤ (ܾ)݈݃ →⏞
௬௦௩

 

(ܽ − ܾ) (ܽ)݈݃ − (ܾ − ܿ) (ܾ)݈݃ ≥
1
2

(ܽ − ܿ) (ܾܽ)݈݃ =  ܾܽ√݈݃

(ܽ − ܾ) (ܽ)݈݃ + (ܾ − ܿ) (ܾ)݈݃ + (ܿ − ܽ) (ܿ)݈݃ ≥ (ܽ − ቆ݈݃(ܿ
√ܾܽ
ܿ
ቇ

≥ 0 … (2) 
From (1) and (2) we have: ൫1 + ܽଵାభశೌ൯ ቀ1 + ܾଵାభశ್ቁ ൫1 + ܿଵାభశ൯ ≥

8ܾܽܿ  
 
2.15 Let  be positive integer and (࢞)ࢌ be a polynomial of degree  
with  distinct real positive roots. Are there positive integer  ≥  
and real polynomial (࢞)ࢍ such that 

+࢞)࢞ )(࢞+ )(࢞+ )(࢞)ࢌ +  =  ?((࢞)ࢍ)
Aleksandar Ivanov-Bulgarian NMO-2017 

Solution: Let ߙଵ < ଶߙ < ⋯ <  Assume that .(ݔ)݂  be the roots ofߙ
ݔ)ݔ + ݔ)(1 + ݔ)(2 + (ݔ)݂(4 + ܽ =  ((ݔ)݃)

Note that ܽ = ܾ = ݃(0). 
If ݇ ≥ 3 is odd then the polynomial ݃(ݔ) − ܾ  has ݊ + 4 distinct real roots 
which will be also roots of ݃(ݔ) − ܾ. However, the degree of ݃(ݔ) − ܾ is 
݊ + 4 ݇⁄ < ݊ + 4, ݅. (ݔ)݃.݁ = ܾ, which is impossible. 
Now it is enough to prove that ݇ = 2 is also impossible. We have ܽ = ܾଶ, 
where we can assume thet ܾ > 0. Then 

ݔ)ݔ + ݔ)(1 + ݔ)(2 + (ݔ)݂(4 = ଵ݃(ݔ)݃ଶ(ݔ), 
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where ଵ݃(ݔ) = (ݔ)݃ + ܾ and ݃ଶ(ݔ) = (ݔ)݃ − ܾ. The roots of ଵ݃(ݔ) and 
݃ଶ(ݔ) are the numbers −4,−2,−1,0,ߙଵ,ߙଶ, … (ݔ). Since ଵ݃ߙ, ≥ ݃ଶ(ݔ) for 
every ݔ, the number -4 is a root of ଵ݃(ݔ). Since the derivatives of ଵ݃(ݔ) and 
݃ଶ(ݔ) coincide, the Rolle’s theorem shows that -2 and -1 are roots of ݃ଶ(ݔ) 
while 0 is a root of ଵ݃(ݔ). 
Let ଵ݃(ݔ) = ݔ)ݔ + 4)∏ ݔ) − )௦ߙ

ୀଵ . Then 

| ଵ݃(−1)| = 3ෑ(1 + (ߙ
௦

ୀଵ

< 4ෑ(2 + (ߙ
௦

ୀଵ

= | ଵ݃(−2)|, 

which contradicts to ଵ݃(−1) = ଵ݃(−2) = ݃(−1) + ܾ = 2ܾ. 
 

2.16 Prove that if ࢈,ࢇ, ࢊ,ࢉ ∈ ℝ; ࢇ) + ࢉ)(࢈ + (ࢊ ≠  then: 

ቤ
ࢉ)ࢇ + (ࢊ − ࢉ)࢈ − (ࢊ

ඥ(ࢇ + ࢉ)(࢈ + (ࢊ
ቤ ≤ ቤ +

ࢊࢇ) − ࢉࢇ)(ࢉ࢈ + (ࢊ࢈
ࢇ) + ࢉ)(࢈ + (ࢊ ቤ 

Daniel Sitaru-Joszef Wildt-International Mathematical Competition-

2017 

Solution (Soumava Chakraborty) 

Case 1. ܽ݀ − ܾܿ = 0 
(ܽ݀ − ܾܿ)ଶ + (ܽܿ + ܾ݀)ଶ = (ܽଶ + ܾଶ)(ܿଶ + ݀ଶ) 

∴ |ܽܿ + ܾ݀| = ඥ(ܽଶ + ܾଶ)(ܿଶ + ݀ଶ) 

ݏℎܮ =
|ܽܿ + ܾ݀|

ඥ(ܽଶ + ܾଶ)(ܿଶ + ݀ଶ)
= 1 = ܴℎݏ 

Case 2. ܽܿ + ܾ݀ = 0 
(ܽ݀ − ܾܿ)ଶ + (ܽܿ + ܾ݀)ଶ = (ܽଶ + ܾଶ)(ܿଶ + ݀ଶ) 

|ܽ݀ − ܾܿ| = ඥ(ܽଶ + ܾଶ)(ܿଶ + ݀ଶ) 

ݏℎܮ =
|ܽ݀ − ܾܿ|

ඥ(ܽଶ + ܾଶ)(ܿଶ + ݀ଶ)
= 1 = ܴℎݏ 

Case 3. ܽ݀ − ܾܿ ≠ 0, ܽܿ + ܾ݀ ≠ 0 
Case 3a. (ܽ݀ − ܾܿ) and (ܽܿ + ܾ݀) are of same sign 

|ܽ݀ − ܾܿ| =  ߠ݊݅ݏ
|ܽܿ + ܾ݀| =  ߠݏܿ

ݏℎܮ = 


ݏܿ| ߠ + ݊݅ݏ ݏand ܴℎ |ߠ = |1 + ݏܿ ߠ ݊݅ݏ  |ߠ
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It suffices to prove: (1 + ݏܿ ߠ ݊݅ݏ ଶ(ߠ ≥ ݏܿ) ߠ + ݊݅ݏ ଶ(ߠ ⇔
ߠଶݏܿߠଶ݊݅ݏ ≥  .(݁ݑݎݐ)	0
Case 3b. (ܽ݀ − ܾܿ) and (ܽܿ + ܾ݀) are of different. 
Then, ܮℎݏ = 


ݏܿ| ߠ − ݊݅ݏ ݏand ܴℎ |ߠ = |1 − ݏܿ ߠ ݊݅ݏ  |ߠ

It suffices to prove: (1 − ݏܿ ߠ ݊݅ݏ ଶ(ߠ ≥ ݏܿ) ߠ − ݊݅ݏ ଶ(ߠ ⇔
ߠଶݏܿߠଶ݊݅ݏ ≥  .(݁ݑݎݐ)	0
 

2.17 If ࢈,ࢇ, ࢉ ∈ (,)	and	ࢇ + ࢈ + ࢉ = ,	then: 

࢈) + ࢇ(ࢉ ∙ ࢉ) + ࢈(ࢇ ∙ ࢇ) + ࢉ(࢈ ∙ +ࢇ√) ࢈√ + (ࢉ√ ≤  

Florică Anastase 

Solution 5: 

:݂:ݐ݁ܮ (0,1) → (ݔ)݂,ࡾ = ݔ ∙ −1)݈݃ (ଶݔ ,݂ᇱ(ݔ)

= 1)݈݃ − (ଶݔ −
ݔ2

1− ଶݔ
,݂ᇱᇱ(ݔ) = −

ݔ2 ∙ (3 − (ଶݔ
(1− ଶ)ଶݔ

< ݔ∀,0

∈ (0,1) → ݂ᇱᇱܿ݁ݒܽܿ݊. 

From Jensen inequality: 

݂ ቆ
1

√ܽ + √ܾ + √ܿ
ቇ = ݂ ቆ

ܽ + ܾ + ܿ
√ܽ + √ܾ + √ܿ

ቇ

≥
√ܽ ∙ ݂൫√ܽ൯+ √ܾ ∙ ݂൫√ܾ൯+ √ܿ ∙ ݂(ඥܿ)

√ܽ + √ܾ + √ܿ
↔ 

1
√ܽ + √ܾ + √ܿ

∙ ݈݃ ቆ1−
1

(√ܽ + √ܾ + √ܿ)ଶ
ቇ

≥
ܽ ∙ 1)݈݃ − ܽ) + ܾ ∙ −1)݈݃ ܾ) + ܿ ∙ 1)	݈݃ − ܿ)

√ܽ + √ܾ + √ܿ
↔ 

(√ܽ + √ܾ + √ܿ)ଶ − (ܽ + ܾ + ܿ)
(√ܽ + √ܾ + √ܿ)ଶ

≥ −൫(1݈݃ ܽ) ∙ (1 − ܾ) ∙ (1 − ܿ)൯ ↔ 

(ܾ + ܿ) ∙ (ܿ + ܽ) ∙ (ܽ + ܾ) ∙ (√ܽ + √ܾ + √ܿ)ଶ ≤ 2(√ܾܽ + √ܾܿ + √ܿܽ) ↔ 

(ܾ + ܿ) ∙ (ܿ + ܽ) ∙ (ܽ + ܾ) ∙ (√ܽ + √ܾ + √ܿ)ଶ ≤ 2(ܽ + ܾ + ܿ) ↔ 
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(ܾ + ܿ) ∙ (ܿ + ܽ) ∙ (ܽ + ܾ) ∙ (√ܽ + √ܾ + √ܿ)ଶ ≤ 2 … …  (݀݁ݒݎ)

 

,࢈,ࢇ	۷ 2.18 ࢉ ∈ ቀ, 

ቁ , ∈ ℕ,ࢇା + ା࢈ + ାࢉ = ,  :ܖ܍ܐܜ

(+ )ࢇ(ࢇ + +)࢈(࢈ ࢉ(ࢉ

ࢇ) + ା࢈ + ࢈)(ାࢉ + ାࢉ + +ࢉ)(ାࢇ ାࢇ + (ା࢈

≤ ൬
 + ࢇ + ࢈ + ࢉ

ࢇ + ࢈ + ࢉ − ൰
ࢉା࢈ାࢇ

 

Florică Anastase 

Solution (Sanong Huayrerai) 

,ܽ	݁ݏݑܽܿ݁ܤ ܾ, ܿ ∈ ൬0,
1
2
൰ ,݊ ∈ ℕ,→ ܽାଵ < ܽ < ܽ <

1
2
	ݏݑ݈݃ܽ݊ܽ	݀݊ܽ	

→ ܽ + ܾ + ܿ ∈ ൬0,
3
2
൰ 

ܽ)ܽ	݁ܿ݊݁ܪ + ܾ + ܿ) < ܽ(ܽ + ܾ + ܿ) <
3
4
 ݏݑ݈݃ܽ݊ܽ	݀݊ܽ

ܽ	݁ܿ݊݁ܪ + ܾାଵ + ܿାଵ ≥ 1 + ܽ −
ܽ

ܽ + ܾ + ܿ
 ݏݑ݈݃ܽ݊ܽ	݀݊ܽ	

(ܽ + ܾାଵ + ܿାଵ)(ܾ + ܿାଵ + ܽାଵ)(ܿ + ܽାଵ + ܾାଵ)

≥ ቀ1 + ܽ −
ܽ

ܽ + ܾ + ܿ
ቁ ൬1 + ܾ −

ܾ
ܽ + ܾ + ܿ

൰ ቀ1 + ܿ

−
ܿ

ܽ + ܾ + ܿቁ

≥ ൬2−
1

ܽ + ܾ + ܿ
൰


൬2−
1

ܽ + ܾ + ܿ
൰


൬2−
1

ܽ + ܾ + ܿ
൰


= ቆ
2(ܽ + ܾ + ܿ) − 1

ܽ + ܾ + ܿ
ቇ
ାା

↔ 

(2(ܽ + ܾ + ܿ) − 1)ାା

(ܽ + ܾାଵ + ܿାଵ)(ܾ + ܿାଵ + ܽାଵ)(ܿ + ܽାଵ + ܾାଵ)
≤ (ܽ + ܾ + ܿ)ାା↔ 

൬
ܽ + ܾ + ܿ + 1
ܽ + ܾ + ܿ

൰
ାା

∙
1

(ܽ + ܾାଵ + ܿାଵ)(ܾ + ܿାଵ + ܽାଵ)(ܿ + ܽାଵ + ܾାଵ)

≤ ൬
ܽ + ܾ + ܿ + 1

2(ܽ + ܾ + ܿ) − 1
൰
ାା

↔ 
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ቆ
ܽ + ܽାଵ + ܾ + ܾାଵ + ܿ + ܿାଵ

ܽ + ܾ + ܿ
ቇ
ାା

∙
1

(ܽ + ܾାଵ + ܿାଵ)(ܾ + ܿାଵ + ܽାଵ)(ܿ + ܽାଵ + ܾାଵ)

≤ ൬
ܽ + ܾ + ܿ + 1

2(ܽ + ܾ + ܿ) − 1
൰
ାା

↔ 

(1 + ܽ)(1 + ܾ)(1 + ܿ)

(ܽ + ܾାଵ + ܿାଵ)(ܾ + ܿାଵ + ܽାଵ)(ܿ + ܽାଵ + ܾାଵ)

≤ ൬
1 + ܽ + ܾ + ܿ

2ܽ + 2ܾ + 2ܿ − 1
൰
ାା

 

 

2.19 If ࢈,ࢇ, ࢉ ∈ (,) or ࢈,ࢇ, ࢉ ∈ (,∞),࢈ࢇ + ࢉ࢈ + ࢇࢉ =  :then ࢉ࢈ࢇ

 ∙ ඩቌෑିࢇ࢚ࢇ
ࢉ࢟ࢉ

ቍቌିࢇ࢚ࢇ
ࢉ࢟ࢉ

ቍ


≤ ିࢇ࢚

⎝

⎛
ට൫∑ ࢉ࢟ࢉࢇ ൯൫∑ ( − ࢉ࢟ࢉ(ࢇ ൯

 − ࢉ࢈ࢇ
⎠

⎞ 

Florică Anastase 

Solution (Adrian Popa) 

2ඥି݊ܽݐଵܽ ∙ ଵܾି݊ܽݐ ∙ ଵܽି݊ܽݐ)ଵܿି݊ܽݐ + ଵܾି݊ܽݐ + ଵܿ)రି݊ܽݐ  

≤
ିீ

2 ∙
ଵܽି݊ܽݐ)2 + ଵܾି݊ܽݐ + (ଵܿି݊ܽݐ

4
 

= ଵି݊ܽݐ ൬
ܽ + ܾ + ܿ − ܾܽܿ

1 − ܾܽ − ܾܿ − ܿܽ
൰ = ଵି݊ܽݐ ൬

ܽ + ܾ + ܿ − ܾܽ − ܾܿ − ܿܽ
1− ܾܽܿ

൰ 

= ଵି݊ܽݐ ൬
ܽ(1 − ܾ) + ܾ(1 − ܿ) + ܿ(1 − ܽ)

1− ܾܽܿ
൰ 

Let be the function: ݂(ݔ) = (ݔ)ᇱ݂,ݔଵି݊ܽݐ = ଵ
ଵା௫మ

> ݔ∀0 ∈ ℝ ⇒

݂ −increasing 

ܽ(1 − ܾ) + ܾ(1 − ܿ) + ܿ(1

− ܽ) ≤
..ௌ

ඥ(ܽଶ + ܾଶ + ܿଶ)((1 − ܽ)ଶ + (1− ܾ)ଶ + (1 − ܿ)ଶ) 

If ܽ, ܾ, ܿ ∈ (0,1) ⇒ ൝
1 − ܽ > 0
1− ܾ > 0
1 − ܿ > 0

 and 1− ܾܽܿ > 0 ⇒ ∑(ଵି)
ଵି

> 0 
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If ܽ, ܾ, ܿ ∈ (1,∞) ) ⇒ ൝
1 − ܽ < 0
1− ܾ < 0
1 − ܿ < 0

 and 1 − ܾܽܿ < 0 ⇒ ∑ (ଵି)
ଵି

> 0 

 

2.20 Let  ≥  be an integer and consider the sum 

࢞ = ቀ

ቁ

ஹ

ି = ቀ

ቁ

 + ቀ

ቁ

ି ∙  + ቀ

ቁ

ି ∙  + ⋯ 

Show that ࢞ − ,࢞,࢞+  from the sides of a triangle whose area 

and inradius are also integers. 

India NMO-2017 

Solution: Consider the binomial expansion of ൫2 + √3൯


. It is easy to check 
that 

൫2 + √3൯


= ݔ +  ,3√ݕ
where ݕ is also an integer. We also have 

൫2−√3൯


= ݔ −  .3√ݕ
Multiplying these two relations, we obtain ݔଶ − ଶݕ3 = 1. 
Since all the terms of the expansion of ൫2 + √3൯


 are positive, we see that 

ݔ2 = ൫2 + √3൯


+ ൫2−√3൯


= 2 ቀ2 + ቀ
݊
2
ቁ2ିଶ ∙ 3 +⋯ቁ ≥ 4. 

Thus ݔ ≥ 3. Hence 2ݔ + 1 < ݔ2 + ݔ2) − 1) and therefore 2ݔ − ,ݔ1,2 ݔ2 + 1 
are the sides of triangle. By Heron’s formula we have 

∆ଶ= ݔ)ݔ3 + ݔ)(ݔ)(1 − 1) = ଶݔ)ଶݔ3 − 1) =  .ଶݕଶݔ9
Hence ∆=  which is an integer, Finally, its inradius is ݕݔ3

ܽ݁ݎܽ
ݎ݁ݐ݁݉݅ݎ݁

=
ݕݔ3
ݔ3

=  ,ݕ

which is also an integer.  
 

2.21 A polynomial (࢞) with real coefficients is called a square if and 

only if is not a constant and there exists a polynomial	(࢞) with real 

coefficients such that (࢞) =  are (࢞)ࢍ and (࢞)ࢌ Suppose that .(࢞)
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non-constant polynomials with real coefficients such that neither of 

them is a square but ࢌ൫(࢞)ࢍ൯ is. Show that ࢌ൫(࢞)ࢍ൯ is not a square. 

India TST-2017 

Solution: We can easily extended the definition of a square polynomial to 
polynomials with complex coefficients. In all the arguments below we consider 
polynomials with complex coefficients. 
Lemma: If (ݔ) is ܽsquare and is a non-zero complex number the (ݔ) − ܽ is 
not square. 
Proof of lemma. Suppose (ݔ) = (ݔ) and (ݔ)ଶݍ − ܽ =  (ݔ)ݍ with both ,(ݔ)ଶݎ
and (ݔ)ݎ being non-constant polynomials. The ܽ = ൫(ݔ)ݍ − (ݔ)ݍ൯൫(ݔ)ݎ +
(ݔ)ݍ ൯. Clearly, either(ݔ)ݎ − (ݔ)ݍ or (ݔ)ݎ +  ,is not constant polynomial (ݔ)ݎ
and hence a contradiction. This proves lemmas. 
Continuation of the solution: We can write ݂(ݔ) as ଵ݂ଶ(ݔ)(ݔ − ܽଵ)(ݔ −
ܽଶ) … ݔ) − ܽ), where ଵ݂(ݔ) is polynomial and ܽଵ,ܽ , … ,ܽ are distinct 
complex numbers. Then  
݂൫݃(ݔ)൯ = ଵ݂

ଶ(݃(ݔ))(݃(ݔ) − ܽଵ)(݃(ݔ) − ܽଶ) … (ݔ)݃) − ܽ) is a square. It 
follows that  
(ݔ)݃) − ܽଵ)(݃(ݔ) − ܽଶ) … (ݔ)݃) − ܽ) = ℎଶ(ݔ). Let ߚ be such that 
(ߚ)݃ = ܽଵ. Then ℎ(ߚ) = 0 and hence ℎ(ݔ) = ݔ) −  .(ݔ)ℎଵ(ߚ
Note that ݃(ߚ) − ܽ = 0 for any ݅ = 1. Therefore it follows that (ݔ −  ଶ(ߚ
divides ݃(ݔ) − ܽ  is a square. Similarly, ݃(ݔ) − ܽ  is a square for ݅ =
1,2 … ,݇.By the above lemma, it follows that ݇ = 1, so ݂(ݔ) = ଵ݂

ଶ(ݔ)(ݔ − ܽ) 
and ݃(ݔ) = ଵ݃

ଶ(ݔ) + ܽ for some non-zero complex number ܽ. Therefore 
݃൫݂(ݔ)൯ = ଵ݃

ଶ൫݂(ݔ)൯ + ܽ and hence by the above lemma it follows that 
݃൫݂(ݔ)൯ is not square. The completes the proof. 
 
2.22 Let ࢈,ࢇ, ࢉ࢈ࢇ be distinct positive real numbers such that ࢉ = . 
Prove that: 


ࢇ

ࢇ) − ࢇ)(࢈ − (ࢉ
ࢉ࢟ࢉ

> 15 

India TST-2017 
 

Solution: Let us consider a cubic polynomial whose roots are ܽ, ܾ, ܿ. We get  
(ݔ)ܲ = ଷݔ − ଶݔ + ݔݍ −  where ,ݎ = ܽ + ܾ + ܿ, ݍ = ܾܽ + ܾܿ + ܿܽ, ݎ =
ܾܽܿ. We observe that: 
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ܽ

(ܽ − ܾ)(ܽ − ܿ) +
ܾ

(ܾ − ܿ)(ܾ − ܽ) +
ܿ

(ܿ − ܽ)(ܿ − ܾ)

= 
−ܽ(ܾ − ܿ)

(ܽ − ܾ)(ܾ − ܿ)(ܿ − ܽ)
௬

 

Let us write 

ܵ = 
−ܽ(ܾ − ܿ)

(ܽ − ܾ)(ܾ − ܿ)(ܿ − ܽ)
௬

 

It is easy to see that ଵܵ = 0, ܵଶ = 0. Since ܽ, ܾ, ܿ are the roots of ܲ(ݔ) = 0, we 
have 
ܽଷ − ଶܽ + ܽݍ + ݎ = 0, ܾଷ − ଶܾ + ܾݍ + ݎ = 0, ܿଷ − ଶܿ + ܿݍ + ݎ = 0. 

Multiply the first by ܾ − ܿ, the second by ܿ − ܽ and the third by ܽ − ܾ, and 
adding all these and dividing the sum by – (ܽ − ܾ)(ܾ − ܿ)(ܿ − ܽ), we obtain 
ܵଷ − ଶܵ + ݍ ଵܵ = 0. 
 Hence ܵଷ =  ܿ Now multiply, the first by ܽ, the second by ܾ and the third by .
and divide through out by – (ܽ − ܾ0(ܾ − ܿ)(ܿ − ܽ) to get ܵସ − ଷܵ + ଶܵݍ −
ݎ ଵܵ = 0. Hence ܵସ = ଶ − Similarly, ܵହ .ݍ = ଶ) − (ݍ − ݍ + ݎ = ଷ −
ݍ2 +   We also get .ݎ
ܵ − ହܵ + ସܵݍ − ଷܵݎ = 0. This gives 

ܵ = ଷ) − ݍ2 + (ݎ − ଶ)ݍ − (ݍ + ݎ = ସ − ݍଶ3 + ݎ2 + ଶݍ . 
We can write it as ܵ = ଶ)ଶ − (ݍ3 + ݎ2 +   .ଶݍ
But ଶ − ݍ3 = (ܽ + ܾ + ܿ)ଶ − 3(ܾܽ + ܾܿ + ܿܽ) = ܽଶ + ܾଶ + ܿଶ − ܾܽ − ܾܿ −
ܿܽ > 0. Hence ܵ > ݎ2 + ଶݍ = 2ܾܽܿ(ܽ + ܾ + ܿ) + (ܾܽ + ܾܿ + ܿܽ)ଶ ≥ 6 +
9 = 15. 
 
2.23 Let ܌ be a nonnegative integer. Determine all functions :ℝ → ℝ 
such thet, for any real constants ,, and ࢚)ࢌ,ࡰ + ࢚, +  is a (ࡰ
polynomial in ܜ of degree at most ࢊ. 

Hong Kong-PreIMO 2017 MOCK EXAM 

Solution: We claim that ݂(ݕ,ݔ) is a polynomial in ݔ and ݕ of degree at most 
݀.	It is obvious that every such polynomial satisfies the desired condition. To 
prove the converse, let ݂ be a function satisfying the desired condition. Pick 
(݀ + 2) straight lines ݈ଵ, ݈ଶ, … , ݈ௗାଶ in ℝଶ such that no two are parallel and no 
three are concurrent. 
Let the equation of ݈ be ℎ(ݕ,ݔ) = 0 where ℎ is a linear polynomial. 
For ݅ < ݆, let (ܽ, ܾ) be the intersection of ݈ and ݈, and consider the 
polynomial 
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(ݕ,ݔ)߮ =  ݂(ܽ,ܾ)
ଵஸழஸௗାଶ

ෑ
ℎ(ݕ,ݔ)

ℎ(ܽ, ܾ)

ௗାଶ

ୀଵ
ஷ,

 

It is easy to see that ߮൫ܽ, ܾ൯ = ݂(ܽ, ܾ) for all ݅ < ݆, and that ݀݁݃߮ ≤ ݀. 
We shall show that ߮(ܽ, ܾ) = ݂(ܽ, ܾ) for all points (ܽ, ܾ) on ݈. Indeed, pick 
constants ܥ,ܤ,ܣ and ܦ such that ݐ → ݐܣ) + ݐܥ,ܤ +  .parametrizes the line (ܦ
Then, note that ߮(ݐܣ + ݐܥ,ܤ + (ܦ − ݐܣ)݂ + ݐܥ,ܤ + ,ܽ) for all (ܦ ܾ) on ݈. 
Now, for a fixed ݈ , note that ߮൫ܽ, ܾ൯ = ݂(ܽ, ܾ) for every ݆ ≠ ݅, so 
݂(ܽ, ܾ) = ߮(ܽ, ܾ) for all points (ܽ, ܾ) on ݈ from the claim. If (ܿ,݀) is a point 
not lying on any ݈ , then we can construct a line ݈ which passes through (ܿ,݀) 
does not pass through any (ܽ, ܾ), and is not parallel to any ݈ . Now 
݂(ܽ, ܾ) = ߮(ܽ, ܾ) with (ܽ, ܾ) = ݈ ∩ ݈ for various ݅, so ݂(ܽ, ܾ) = ߮(ܽ, ܾ) for all 
(ܽ, ܾ) on ݈. In particular, ߮(ܽ, ܾ) = ݂(ܿ,݀). This completes the proof. 
 
2.24 Let ܓ be a real parameter. Determine the number of real 
solutions to the system 

ቐ
࢞ + +࢟࢞ ࢟ = ࢠ
࢟ + +ࢠ࢟ ࢠ = ࢞
ࢠ + +࢞ࢠ ࢞ = ࢟

 

in terms of ࢞. 
Patrik Bak-Czech& Slovak NMO-2017 

Solution: We distinguish  several cases. 
First, assume ݔ = ݕ = ݇) Then the whole system reduces to .ݖ + ଶݔ(2 =  Its .ݔ
solutions is  a triplet (0,0,0) for any ݇ and moreover triplet ቀ ଵ

ାଶ
, ଵ
ାଶ

, ଵ
ାଶ

ቁ if 
݇ ≠ −2.	Let’s get back to the original system. Subtracting the second equation 
from the first one yields 

ଶݔ) − (ଶݖ + ݔ)ݕ݇ − (ݖ = ݖ −  ݔ
which rewrites as  

ݔ) − ݔ)(ݖ + ݖ + ݕ݇ + 1) = 0; 				(1) 
Similarly, subtracting  the third equation from the second one yields 

ݕ) − ݕ)(ݔ + ݔ + ݖ݇ + 1) = 0; 			(2) 
If ݔ ≠ ݕ ≠ ݖ ≠  the equations (1),(2) reduces to ,ݔ

ݔ + ݖ + ݕ݇ + 1 = 0 
ݕ + ݔ + ݖ݇ + 1 = 0 

Subtracting these two equations we arrive at (ݕ − ݇)(ݖ − 1) = 0 implying 
that ݇ = 1 and ݔ + ݕ + ݖ = −1. However that’s impossible since for ݇ = 1 we 
get  
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ݖ = ଶݔ + ݕݔ + ଶݕ = ቀݔ +
ݕ
2
ቁ
ଶ

+
ଷݕ3

4
≥ 0 

and likewise ݔ ≥ 1 and ݕ ≥ 0 so altogether ݔ + ݕ + ݖ ≥ 0. 
We found out that in every solution to the original system, some two 
unknowns have the same value. As the system is cyclic, let us from now on 
assume ݔ = ݕ ≠ ݔ the case) ݖ = ݕ =  has already been solved). Equation (1) ݖ
then implies ݔ + ݕ + ݕ݇ + 1 = 0, that is ݔ = −(݇ + ݕ(1 − 1, and the original 
system to a single equation 

(݇ + ଶݕ(2 + (݇ + ݕ(1 + 1 = 0; 			(3) 
Let us remark thet any solution to equation (3) is a solution we haven’t found 
yet, because equality ݔ = ݕ .i.e ݕ = −(݇ + ݕ(1 − 1 is only possible for ݇ ≠ −2 
and yields  
ݔ = ݕ = ݖ = − ଵ

ାଶ
 which is not solution to the original system. 

For ݇ = −2 the equation (3) is linear with a unique solution ݕ = 1. This yields 
solution (0,1,1) and its two permutations. 
 
For ݇ ≠ −2 the equation (3) is quadratic and has real solutions if and only if  

ܦ = (݇ + 1)ଶ − 4(݇ + 2) = ݇ଶ − 2݇ − 7 ≥ 0, 
which translated to ݇ ∉ ൫1− 2√2, 1 + 2√2൯. For ݇ = 1 ± 2√2 there is a 
unique solution  
ݕ = − ାଵ

ଶ(ାଶ)
= 1 ± √2 a ݔ = ାଵ

ଶ(ାଶ)
− 1 = 1 

 
Which yields three permutations of (ݔ,ݕ,ݕ) as solutions to the original 
system. 
For ݇ ∈ (−∞,−2) ∪ ൫−2,1 − 2√2൯ ∪ ൫1 + 2√2,∞൯, the quadratic equation 
(3) has two distinct solutions 

ଵ,ଶݕ =
−݇ − 1 ± √݇ଶ − 2݇ − 7

2(݇ + 2)
 

that give two distinct values ݔଵ,ଶ = −(݇ + ଵ,ଶݕ(1 − 1. The original system thus 
has six solutions: three permutations of (ݔଵ  ଵ) and three permutations ofݕ,ଵݕ,
 .(ଶݕ,ଶݕ,ଶݔ)
 
The following table summarizes the number of solutions to the given system in 
terms of ݇: 
Interval for k (0,0,0

) 
൬

1
݇ + 2

,
1

݇ + 2
,

1
݇ + 2

൰ Equation 

(3) 

Total 

(−∞,−2) 1 1 6 8 
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−2 1 0 3 4 

൫−2,1− 2√2൯ 1 1 6 8 

1 − 2√2 1 1 3 5 

൫1− 2√2, 1 + 2√2൯ 1 1 0 2 

1 + 2√2 1 1 3 5 

(1 + 2√2,∞) 1 1 6 8 

 

2.25 Let  ∈ [,]. Solve the system 

⎩
⎨

⎧ − ࢞ = ࢟
 − ࢟ = ࢠ
 − ࢠ = ࢛
 − ࢛ = ࢞

 

In real numbers. 
Jaroslav Svrcek-Czech and Slovak NMO-2017 

Solution: Subtracting the third equation from the first one we get 
ଶݖ − ଶݔ = ݖ) − ݖ)(ݔ + (ݔ = ݕ − ;ݑ 		(1) 

Similarly, the second and the fourth equation imply 
ଶݕ − ଶݑ = ݕ) − ݕ)(ݑ + (ݑ = ݔ − ;ݖ 				(2) 

Relations (1) and (2) then imply that ݔ = ݕ holds if and only if ݖ =  holds. We ݑ
distinguish two cases. Denote a) and b). 
a) First, let us assume that ݔ = ݕ and ݖ =  that is we are looking for ,ݑ
quadruplets of the form (ݕ,ݔ, (ݑ,ݖ = ,ݕ,ݔ) ,ݔ  The .ݕ and ݔ with unknown (ݕ
original system reduces to 

൜݇ − ଶݔ = ݕ
݇ − ଶݕ = ݔ

 

Subtracting the equation and rewriting we obtain 
ݕ) − ݕ)(ݔ + ݔ − 1) = 0 

We distinguish two (not quite disjoint) subcases. 
If ݕ − ݔ = 0, the reduced system further reduces to a single quadratic equation 

ଶݔ + ݔ − ݇ = 0. 
For any ݇ ∈ (0,1), this equation has two real solutions. 

ଵ,ଶݔ =
−1 ± √4݇ + 1

2
. 

The original system therefore has at least two solutions 
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ଵݔ = ଵݕ = ଵݖ = ଵݑ =
−1 −√4݇ + 1

2
, ଶݔ = ଶݕ = ଶݖ = ଶݑ

=
−1 + √4݇ + 1

2
; 			(3) 

If ݔ + ݕ − 1 = 0, the reduced system further reduces to quadratic equation 
ଶݔ − ݔ + (1− ݇) = 0. 

Since its discriminant  equals 4݇ − 3, this quadratic equation has solution if 

and only if ݇ ≥ ଷ
ସ
. The solutions are ݔଷ = ଵା√ସିଷ

ଶ
 and ݔସ = ଵି√ସିଷ

ଶ
 and the 

corresponding values of ݕ = 1 − ଷݕ then ݔ = ଵି√ସିଷ
ଶ

 and ݕସ = ଵା√ସିଷ
ଶ

. 

If ݇ = ଷ
ସ
, these solutions are identical and in fact identical with solutions 

already found in (3). On the other hand, for ଷ
ସ

< ݇ ≤ 1 we obtain two other 
distinct solutions  
,ݕ,ݔ) (ݑ,ݖ = ଷݔ) ,ݕ,ݔ) ଷ) andݑ,ଷݖ,ଷݕ, ,ݖ (ݐ = ସݖ,ସݕ,ସݔ) ;(ସݑ, 		(4) 
b) Second, let us assume ݔ ≠ ݕ and ݖ ≠ ݔ In this case, plugging .ݑ −  form (2) ݖ
into the left-hand side of (1) and dividing by nonzero ݕ −   we arrive at ݑ

ݔ) + ݕ)(ݖ + (ݑ = −1; 				(5) 
Since the right-hand side of (5) is negative, at least one of the numbers 
,ݕ,ݔ  is positive and at least one of them is negative. However, this ݑ,ݖ
contradicts a sequence of implications 

ݔ ≥ 0 ⇒ ݕ ≥ 0 ⇒ ݖ ≥ 0 ⇒ ݑ ≥ 0 ⇒ ݔ ≥ 0,				(6) 
That prove us now: 
It suffices to prove the first implication (the proofs of the others are 
analogous). 
Assume ݔ > 0. The fourth equation of the original system implies ݔ ≤ ݇ and 
since ݇ ≤ 1, we have 0 ≤ ݔ ≤ ݇ ≤ 1. This implies ݔଶ ≤ ݇ (as ݐଶ ≤  for any ݐ
ݐ ∈ (0,1)). The first equation of the original system now implies ݕ ≥ 0 as 
desired. 
Therefore there are no solutions in case b). 
Answer. If 0 ≤ ݇ ≤ ଷ

ସ
, the system has two solutions given by expressions in (3). 

If ଷ
ସ

< ݇ ≤ 1, the system has four solutions given expressions in (3) and (4). 
 

2.26 For all positive real numbers ࢈,ࢇ,  :which satisfy the equality ࢉ

ቆ࢈ࢇ −
ࢉ

ࢇ) + ቇ(࢈ = ቆࢉ࢈ −
ࢇ

࢈) + ቇ(ࢉ = ࢇࢉ ቆ −
࢈

ࢉ) +  ቇ(ࢇ

Vladislav Yurushev-Ukrainian NMO-2016 
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Solution: Rewrite the given equality in the following way: 
ܽ((ܽ + ܾ)ଶ − ܿଶ)

(ܽ + ܾ)ଶ =
ܿ((ܾ + ܿ)ଶ − ܽଶ)

(ܾ + ܿ)ଶ  ݎ	

	
ܽ(ܽ + ܾ − ܿ)(ܽ + ܾ + ܿ)

(ܽ + ܾ)ଶ
=
ܿ(ܾ + ܿ − ܽ)(ܾ + ܿ + ܽ)

(ܾ + ܿ)ଶ
 

Suppose that ܿ ≥ ܽ + ܾ. Then ܾ + ܿ > ܽ, so the left side of the equality is not 
positive while the right side is positive. This contradiction means that 
ܾ + ܿ > ܽ,ܽ + ܿ > ܾ and ܾ + ܽ > ܿ so we can treat the sides ܽ, ܾ, ܿ as sides of 
a triangle. 
But the given equalities literally mean that the angle  bisectors of this triangle 
equal. Indeed: 
ଶݓ = ܾܽ − ܽଵܾଵ, where ܽଵ, ܾଵ are the lengths of two parts of the opposite side 
which are derived after drawing the angle bisector. Then we have: ܽଵ + ܾଵ = ܿ 
and భ

భ
= 


. It is easy to see that ܽଵ = 

ା
 and ܾଵ = 

ା
. Then ݓଶ = ܾܽ −

ܽଵܾଵ = ܾܽ − మ

(ା)మ
= ܾܽ ቀ1− మ

(ା)మቁ. Since if three angle bisectors are equal 

he triangle is regular, we obtain that the solutions are (ݐ, ,ݐ ݐ where ,(ݐ > 0. 
 
2.27 Compare the following numbers:  

 = , = ܗܔ  ∙ ܗܔ  ∙ ܗܔ  ∙ … ∙ ܗܔ  

 = ܗܔ  ∙ ܗܔ  ∙ ܗܔ  ∙ … ∙ ܗܔ  

Ukrainian NMO-2017 

Solution: Obviously, for any integer ݊ > 0, ାଵ݈݃ ݊ < 1. Hence, ܥ < 1. Also 

we have that ܤ ∙ ܥ = 1, so ܤ > 1, moreover 

ܤ =
݈݃3
݈݃2

∙
݈݃4
݈݃5

∙
݈݃5
݈݃6

∙… ∙
݈݃2016
݈݃2015

=
݈݃2016
݈݃2

< 11 = ܣ ⇔ ݈݃2016 < 11݈݃2

⇔ 2016 < 2ଵଵ = 2048. 

  

2.28 Let (࢞)ࢌ = ࢞ࢇ + ࢞࢈ +  be a polynomial with integer ࢉ
coefficients. For every integer ࢞,  is a ࡺ where ࡺ is divisible by (࢞)ࢌ
positive integer. Is it true that ࡺ necesary divisible all the coefficients 
of (࢞)ࢌ if  

ࡺ	(ࢇ = 								(࢈	ࡺ = ૠ? 
Ukrainian NMO-2017 
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Solution: 

a) Note that for any integer ݔ product ݔ)ݔ + 1) is even. This suggests the 
following example: 

ݔ)ݔ1008 + 1) + 2016 = ଶݔ1008 + ݔ1008 + 2016. 
b) We have ݂(ݔ) = ଶݔܽ + ݔܾ + ܿ. Let us do the following substitutions: 

ݔ = 0 ⇒ ݂(0) = ܿ ⋮ 2017 
ݔ = 1 ⇒ ݂(1) = (ܽ + ܾ + ܿ) ⋮ 2017 

ݔ = −1 ⇒ ݂(−1) = (ܽ − ܾ + ܿ) ⋮ 2017 
Then both ܽ + ܾ and ܽ − ܾ are divisible by 2017, so are 2ܽ and 2ܾ. Since 2017 
is odd all the coefficients are divisible by 2017. 
 
2.29 The sequence ࢇ = ,ࢇ,ࢇ,ࢇ) … ) is defined by ࢇ = ,ࢇ =  

and ࢇା = ࢇା + ࢇ for all  ≥ . 

Prove that ࢇ is divisible by 2017. 

Tom Laffey-Ireland SHL-2017 

Solution: Consider the recursion modulo 2017 and go back eight steps 

଼ܽା଼ = 2଼ܽା + 41଼ܽା = 45଼ܽା + 82଼ܽାହ
= 172଼ܽାହ + 1845଼ܽାସ 

≡ 1345଼ܽାସ + 1001଼ܽାଷ(݉2017݀)

≡ 1674଼ܽାଶ + 686଼ܽାଵ(݉2017݀) ≡ 56଼ܽ(݉2017݀). 

Because ܽ = 0 it now follows by induction that 2017 divides ଼ܽ for every 

non-negative integer ݇. As 2016 is divisible by 8, the result follows. 

2.30 For  ≤ ࢞ ≤ , let (࢞)ࢌ = ඥ࢞ + ( − (࢞ , = ,… 

Prove for all  ≤ ࢞ ≤  that: ࢌା(࢞) ≤ ,(࢞)ࢌ = ,… 

Finbar Holland-Ireland NMO-2017 

Solution: First observe that ݂ ቀ
ଵ
ଶ

+ ܿቁ = ݂ ቀ
ଵ
ଶ
− ܿቁ = ටቀଵ

ଶ
+ ܿቁ


+ ቀଵ

ଶ
− ܿቁ


. 

Hence, it is sufficient to consider ݔ in the range 0 ≤ ݔ ≤ ଵ
ଶ
. 

For such ݔ, put ݐ = ௫
ଵି௫

, so that 0 ≤ ݐ ≤ 1. Define ݃(ݐ) = ݐ√ + 1  to obtain  
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݂(ݔ) = (1−  So, the problem comes down to showing that .(ݐ)݃(ݔ
݃(ݐ) ≥ ݃ାଵ(ݐ), equivalently, (ݐ + 1)ାଵ ≥ ାଵݐ) + 1) whence, by 
binomial expansion, the claim is that 

൬
݊ + 1
݇

൰ ݐ
ାଵ

ୀ

≥ ቀ
݊
݇
ቁ (ାଵ)ݐ



ୀ

, ݅. ݁. 

ቆ൬
݊ + 1
݇

൰ − ቀ
݊
݇
ቁቇ (1ݐ − (ݐ

ିଵ

ୀ

+ ൬
݊+ 1
݊

൰ మݐ ≥ 0. 

But ൫ାଵ ൯ − ൫൯ = ൫ 
ିଵ൯ ≥ 0 and 1 − ݐ ≥ 0 for 0 ≤ ݐ ≤ 1, hence the result. 

 

2.31 1. If ࢈,ࢇ > 0 then: ࢈࢈ ⋅ ାࢇࢋ

ࢇ ≥ ࢈ࢋ 

2. If ࢇ > 0,0 < ܾ ≤ 1 then: ࢈࢈ ⋅ ାࢋ

ࢇ ≥ ࢈ ⋅  ࢈ࢋ

Abdallah El Farissi  

Solution (Soumitra Mandal) 

1.Let ܽ, ܾ > 0 then ܾ ⋅ ݁ା
భ
ೌ ≥ 2݁  

Now ܾ ݈݊ ܾ + ܽ + ଵ

− ݈݊2− ܾ = ܾ ݈݊ ܾ + ቀܽ + ଵ


− 2ቁ + 2 − ݈݊ 2− ܾ 

≥ ܾ ݈݊ ܾ + ቀܽ + ଵ

− 2ቁ + 2 + 1 − ݁ ଶ − ܾ since, ݁ ଶ ≥ 1 + ݈݊ 2 

≥ ܾ(݈݊ ܾ − 1) + ൬ܽ +
1
ܽ
− 2൰ + 1 ≥ ܾ ൬

ܾ − 1
ܾ

− 1൰ + ൬ܽ +
1
ܽ
− 2൰ + 1 

∵ ݔ)݈݊ + 1) ≥
ݔ

ݔ + 1
 

= ܽ +
1
ܽ
− 2 ≥ 0 

Hence, ܾ ݈݊ ܾ + ܽ + ଵ

≥ ݈݊ 2 + ܾ ⇒ ܾ ⋅ ݁ା

భ
ೌ ≥ 2݁  (proved) 

2.Let ܽ > 0, 0 < ܾ ≤ 1 then ܾ ⋅ ݁ଵା
భ
ೌ ≥ (2݁)  

Now, ܾ ݈݊ ܾ + ܽ + ଵ

− ܾ ݈݊ 2− ܾ 

= ܾ ݈݊ ܾ + 2 + ൬ܽ +
1
ܽ
− 2൰ − ܾ ݈݊2 − ܾ 

≥ ܾ ݈݊ ܾ + 2 + ቀܽ + ଵ

− 2ቁ + ܾ൫1− ݁ ଶ൯ − ܾ since, ݁ ଶ ≥ 1 + ݈݊2 

≥ ܾ ቀିଵ

ቁ + 2(1− ܾ) + ቀܽ + ଵ


− 2ቁ since, ݈݊(1 + (ݔ ≥ ௫

௫ାଵ
 for all ݔ ≥ 0 

= 1− ܾ + ൬ܽ +
1
ܽ
− 2൰ ≥ 0 
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∵ 0 < ܾ ≤ 1 and ܽ + ଵ

≥ 2 

Hence, ܾ ݈݊ ܾ + ܽ + ଵ

≥ ܾ ݈݊2 + ܾ ⇒ ܾ ⋅ ݁ା

భ
ೌ ≥ (2݁)  (proved) 

 

2.32 If ࢇ,ࢇ, … ࢇ, ∈ [,), ∈ ℕ∗ then: 

ෑ
 + ࢇ
 − ࢇ



ୀ

≥ ቆ
 + ඥࢇࢇ ࢇ…

 − ඥࢇࢇ ࢇ… ቇ


 

Regragui El Khammal 

Solution: 

1 − ܽଵ ≥ 1 − ܽଶ ≥ ⋯ ≥ 1 − ܽ;
1

1− ܽଵ
≤

1
1 − ܽଶ

≤ ⋯ ≤
1

1 − ܽ
 

1 + ܽଵ
1 − ܽଵ

≤
1 + ܽଶ
1 − ܽଶ

≤ ⋯ ≤
1 + ܽ
1 − ܽ

 

ෑ
1 + ܽ
1 − ܽ



ୀଵ

≥ ൬
1 + ܽଵ
1− ܽଵ

൰


= ݂(ܽଵ), (1) 

݂: [0,1) → ℝ, (ݔ)݂ = ଵା௫
ଵି௫

, (ݔ)′݂ = ିଶ௫
(ଵି௫)మ

< 0,݂ decreasing 

ܽଵ ≤ ඥܽଵܽଶ … ܽ ;݂(ܽଵ) ≥ ݂൫ඥܽଵܽଶ … ܽ ൯ 
By (1): 

ෑ
1 + ܽ
1 − ܽ



ୀଵ

≥ ൬
1 + ܽଵ
1 − ܽଵ

൰


= ൫݂(ܽଵ)൯ ≥ ቀ݂൫ඥܽଵܽଶ … ܽ ൯ቁ


 

ෑ
1 + ܽ
1− ܽ



ୀଵ

≥ ቆ
1 + ඥܽଵܽଶ … ܽ

1− ඥܽଵܽଶ … ܽ ቇ


 

 
2.33 Solve for real numbers: 

ܖܑܛ ܖܑܛା࢞ ࢞ + ܖܑܛ ࢟ܖܑܛା࢟ + ܖܑܛ ࢠܖܑܛାࢠ = ܖܑܛ  ࢠܖܑܛା࢟ܖܑܛା࢞

 Daniel Sitaru  

Solution(Avishek Mitra) 

3௦మ ௫ା௦ ௫ + 3௦మ ௬ା௦ ௬ + 3௦మ ௭ା௦ ௭ ≥
ெିீெ

3൫3∑௦మ ௫ା∑௦ ௫൯
ଵ
ଷ 
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⇒ ൫3௦ ௫ା௦ ௬ା௦ ௭൯
ଷ
≥ 27 ⋅ 3∑௦మ ௫ା∑௦ ௫ 

⇒ 3ଷ(௦ ௫ା௦௬ା௦ ௭) ≥ 3ଷା∑௦మ ௫ା∑௦ ௫ 

⇒ 3ݔ݊݅ݏ ≥ 3 +݊݅ݏଶ ݔ +ݔ݊݅ݏ ⇒݊݅ݏଶ ݔ − 2ݔ݊݅ݏ + 1 ≤ 0 

⇒ ݊݅ݏ) ݔ − 1)ଶ + ݊݅ݏ) ݕ − 1)ଶ + ݊݅ݏ) ݖ − 1)ଶ ≤ 0 

But for any real ݕ,ݔ, ݖ ⇒ ݊݅ݏ) ݔ − 1)ଶ + ݊݅ݏ) ݕ − 1)ଶ + ݊݅ݏ) ݖ − 1)ଶ ≥ 0 

So, this is possible if and only if 

⇔ ݊݅ݏ) ݔ − 1)ଶ + ݊݅ݏ) ݕ − 1)ଶ + ݊݅ݏ) ݖ − 1)ଶ = 0 

⇒ ݊݅ݏ) ݔ − 1)ଶ = ݊݅ݏ) ݕ − 1)ଶ = ݊݅ݏ) ݖ − 1)ଶ = 0 ⇒ 

݊݅ݏ ݔ = ݊݅ݏ ݕ = ݊݅ݏ ݖ = 1 

ݔ = ߨ2݇ +
ߨ
2

, ݕ = ߨ2 +
ߨ
2

, ݖ = ߨݍ2 +
ߨ
2

 

,,݇ ݍ ∈ ℤ 

 

2.34 Let the sequence (ࢇ)ஹ be defined as: 

ࢇ = ඪା ඩା ඨା ටା

 

where   are arrangements:  = ൫൯ ∙  !

Prove that ࢇ < ૢ


∙  + ૠ

 

Moldova NMO-2017  

Solution: This problem is immediately by AM-GM inequality 

ܽ = ඪܣାଶଵ ඩܣାସଶ ඨܣାସଷ ටܣାହସఱరయ
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= ඩ(݊ + 2)ඨ(݊ + 2)(݊ + 3)ට(݊ + 2)(݊ + 3)(݊ + 4)ඥ(݊ + 2)(݊ + 3)(݊ + 4)(݊ + 5)ఱరయ

 

= ඥ(݊ + 2)଼(݊ + 3)ଶ(݊ + 4)ହ(݊ + 5)భమబ  

=
118݊ + 277

120
<

119
120

∙ ݊ +
7
3

. 

 

2.35 For all positive real numbers ࢟,࢞ and ࢠ prove the following 
inequality: 

࢞

࢟࢞ + ࢠ +
࢟

ࢠ࢟ + ࢞ +
ࢠ

࢞ࢠ + ࢟ ≥
࢞) + ࢟ + (ࢠ

[࢞(࢟+ ) + ࢠ)࢟ + ) + +࢞)ࢠ )] 

Tonci Kokan-Croatian NMO-2015 

Solution: By the CBS inequality we have 

ቆ
ଶݔ

ݕݔ + ݖ
+

ଶݕ

ݖݕ + ݔ
+

ଶݖ

ݔݖ + ݕ
ቇ ݕݔ)ݔ] + (ݖ + ݖݕ)ݕ + (ݔ + ݔݖ)ݖ + [(ݕ

≥ ൫ݔ√ݔ + ݕඥݕ + ൯ݖ√ݖ
ଶ

; 			(1) 

By the inequality between power means we have 

ቆ
ݔ√ݔ + ݕඥݕ + ݖ√ݖ

3
ቇ

ଶ
ଷ
≥
ݔ + ݕ + ݖ

3
, 

i. e. 

൫ݔ√ݔ + ݕඥݕ + ൯ݖ√ݖ
ଶ
≥

ݔ) + ݕ + ଷ(ݖ

3
; 			(2) 

By the AM-GM inequality we have 

ଶݔ + ଶݕ + ଶݖ =
ଶݔ + ଶݕ

2
+
ଶݕ + ଶݖ

2
+
ଶݖ + ଶݔ

2
≥ ݕݔ + ݖݕ + ;ݔݖ 				(3) 

So, from (1),(2) and (3) it follows that 
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ଶݔ

ݕݔ + ݖ
+

ଶݕ

ݖݕ + ݔ
+

ଶݖ

ݔݖ + ݕ
≥

൫ݔ√ݔ + ݕඥݕ + ൯ݖ√ݖ
ଶ

ݕଶݔ + ݖଶݕ + ݔଶݖ + ݔݖ + ݕݔ + ݖݕ
																		 

																																							≥
ݔ) + ݕ + ଷ(ݖ

ݕଶݔ)3 + ݖଶݕ + ݔଶݖ + ݔݖ + ݕݔ +  (ݖݕ

																																											≥
ݔ) + ݕ + ଷ(ݖ

ݕ)ଶݔ]3 + 1) + ݖ)ଶݕ + 1) + ݔ)ଶݖ + 1)] 

2.36 Find all quadruplets (࢈,ࢇ,  of real numbers satisfying the (ࢊ,ࢉ

system 

ቐ
ࢇ) + ࢇ)(࢈ + (࢈ = ࢉ) + ࢉ)(ࢊ + (ࢊ
ࢇ) + ࢇ)(ࢉ + (ࢉ = ࢈) + ࢈)(ࢊ + (ࢊ
ࢇ) + ࢇ)(ࢊ + (ࢊ = ࢈) + ࢈)(ࢉ + (ࢉ

 

Czech-Polish-Slovak Match-2016 

Solution: Let us set ݂(ݕ,ݔ) = ݔ) + ଶݔ)(ݕ +  (ଶݕ
    We’ll show that for any real ݔ the inequality ݕ ≥ (ݕ,ݔ)݂ implies ݖ ≥ ,ݔ)݂  .(ݖ
After subtraction we see that 

(ݕ,ݔ)݂ − ,ݔ)݂ (ݖ =
1
2

ݕ) − ݔ))(ݖ + ଶ(ݕ + ݕ) + ଶ(ݖ + ݖ) + (ଶ(ݔ ≥ 0 

    Moreover, equality occurs when ݕ = ݔ or ݖ = ݕ = ݖ = 0, so either way it 
implies ݕ =  .ݖ
    We can rewrite the system (implicitly using the symmetry of ݂) to the form: 

ቐ
݂(ܽ, ܾ) = ݂(ܿ,݀)
݂(ܽ, ܿ) = ݂(ܾ,݀)
݂(ܽ,݀) = ݂(ܾ, ܿ)

 

    Now we can see that the system is symmetric in variables ܽ, ܾ, ܿ,݀ and may 
assume ܽ = ,ܽ}ݔܽ݉ ܾ, ܿ,݀}. We then write the chain of (in)equalities 

݂(ܿ,݀) = ݂(ܽ, ܾ) ≥ ݂(ܿ, ܾ) = ݂(ܽ,݀) ≥ ݂(ܾ,݀) = ݂(ܽ, ܿ) ≥ ݂(݀, ܿ) 
and since we in fact have equality everywhere, we deduce that ܽ = ܾ = ܿ = ݀. 
    All such quadruplets clearly satisfy the system so the problem is solved. 
2.37 Let ࢈,ࢇ, ࢉ ≥ . Prove that 

ඥ(ࢇ + ࢈)(࢈ + ࢉ)(ࢉ + (ࢇ ≥ ඨ(ࢇ + ࢈)(࢈ + ࢉ)(ࢉ + (ࢇ
ૡ



+ ࢉ࢈ࢇ√  
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E.Enkhzaya-Mongolian NMO-2010 

Solution:  By Am-GM inequality 

3 = ൬
1

1 + ଵݔ
+

1
1 + ଶݔ

+
1

1 + ଷݔ
൰ + ൬

ଵݔ
1 + ଵݔ

+
ଶݔ

1 + ଶݔ
+

ଷݔ
1 + ଷݔ

൰ ≥ 

≥ 3ඨ
1

(1 + ଵ)(1ݔ + ଶ)(1ݔ + (ଷݔ
య

+ 3ඨ
ଷݔଶݔଵݔ

(1 + ଵ)(1ݔ + ଶ)(1ݔ + (ଷݔ
య

 

for ݔଵ, ,ଶݔ ଷݔ > 0. 
     Now, if ݔ = 


,ܽ ,ܾ > 0, from above it implies 

ඥ(ܽଵ + ܾଵ)(ܽଶ + ܾଶ)(ܽଷ + ܾଷ)య ≥ ඥܽଵܽଶܽଷయ + ඥܾଵܾଶܾଷ
య .			(∗) 

     Also ݔ + ݕ ≤ ඥ2(ݔଶ + ݕ,ݔ ଶ) holds forݕ > 0. 

     If ݔ = ටమାమ

ଶ
 and ݕ = √ܾܽ	then it implies 

ඨܽ
ଶ + ܾଶ

2
+ √ܾܽ ≤ ܽ + ܾ.					(1) 

    Using (1) and (∗), we have 

ඥ(ܽ + ܾ)(ܾ + ܿ)(ܿ + ܽ)య ≥
(ଵ)

ඩෑቌඨ
ܽଶ + ܾଶ

2
+ √ܾܽቍ

௬

≥
(∗)

 

≥ ඩඨܽ
ଶ + ܾଶ

2
∙ ඨ
ܾଶ + ܿଶ

2
∙ ඨ
ܿଶ + ܽଶ

2

య

+ ට√ܾܽ ∙ √ܾܿ ∙ √ܿܽ
య

= 

= ඨ
(ܽଶ + ܾଶ)(ܾଶ + ܿଶ)(ܿଶ + ܽଶ)

8
ల

+ √ܾܽܿయ  

Equality holds for ܽ = ܾ = ܿ. 
2.38 Prove that  ∤ ቂ൫√ૡ − ൯

ܖି
ቃ, for all n 

B.Amarsanaa-Mongolian NMO-2010 

Solution: Using ܽଷ − ܾଷ(ܽ − ܾ)(ܽଶ + ܾܽ + ܾଶ), 

൫√28య − 3൯
ି

= ቀ൫√2݉య ൯
ଶ

+ 3 ∙ √28య + 3ଷቁ


= 
݊!

݇! ݈!݉! ൫√28య ൯
ଶା

3ାଶ
ାାୀ
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Let ߝ = ݏܿ ଶగ
ଷ

+ ݅ ݊݅ݏ ଶగ
ଷ

. Consider  

ܵ = ቀ൫√2݉య ൯
ଶ

+ 3 ∙ √28య + 3ଷቁ


+ ቀ൫√2݉య ൯ߝ
ଶ

+ 3 ∙ √28య ߝ + 3ଷቁ


+ 

+ ቀ൫√2݉య ଶ൯ߝ
ଶ

+ 3 ∙ √28య ଶߝ + 3ଷቁ


= 

= 
݊!

݇! ݈!݉!
൫√28య ൯

ଶା
3ାଶ

ାାୀ

൫1 + ଶାߝ +  ସାଶ൯ߝ

If 2݇ + ݈ ≢ then 1 ,(3	݀݉)	0 + ଶାߝ + ସାଶߝ = 0. 

If  2݇ + ݈ ≡ then 1 ,(3	݀݉)	0 + ଶାߝ + ସାଶߝ = 3. Hence we get that ܵ ∈ ℤ 
and ܵ ≡  On the other hand, it is easy to check that .(3	݀݉)	3

ܣ = ቚ൫√2݉య ൯ߝ
ଶ

+ 3 ∙ √28య ߝ + 3ଷቚ < ܤ,1 = ቚ൫√2݉య ଶ൯ߝ
ଶ

+ 3 ∙ √28య ଶߝ + 3ଷቚ < 1 

From this implies that ቂ൫√28య − 3൯
ି
ቃ = [ܵ − ܣ − [ܤ ≢  (6	݀݉)0

2.39 Positive integers ,ࢇ satisfies:  = ࢇ − . Find all ܉ such that 



) + ) is a square of integer. 

Klurman Olekisy-Ukrainian NMO-2015 

Solution: For ܽ = 1 we have  = 1 and ଵ
ଶ

ଶ) + 1) = 1 satisfies the problem. 

For ܽ = 2 we have  = 3 and ଵ
ଶ

ଶ) + 1) = 5 doesn’t satisfy the problem. 

Assume now ܽ ≥ 3. Let ଵ
ଶ

ଶ) + 1) = ଶ ଵଶ, then − ଵଶ2 = −1.  

Hence: 2ଶ − 2ାଵ + 1 − ଵଶ2 = −1 or 2ଶିଵ − 2 = ଵଶ − 1. So 2(2ିଵ −
1) = ଵ) − ଶ)(1 − 1). LHS is even, so as RHS. So ݃ܿ݀(ଵ − ଶ,1 + 1) = 2. 
So, only the following cases are possible. 

ଵ (1    + 1 = 2݈ and ݈݇ = 2ିଵ − 1. 

If ݇ ≥ ଵ,2 ≥ 2 + 1 and ݈ ≥ 2ିଵ + 1, a contradiction with ݈݇ = 2ିଵ − 1. 
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If ݇ = ଵ,1 = 2ିଵ + 1and ݈݇ = 2ିଶ + 1 = 2ିଵ − 1. Hence ܽ = 3. 

ଵ (2     − 1 = ଵ,2݇ + 1 = 2ିଵ݈, and ݈݇ = 2ିଵ − 1. 

If ݈ ≥ ଵ,2 ≥ 2 − 1 and ݇ ≥ 2ିଵ − 1, so 2ିଵ = ݈݇ ≥ 2 − 2, hence ܽ = 1. 

If ݈ = ଵ,1 = 2ିଵ − 1 and ݇ = 2ିଶ − 1 and ݈݇ = 2ିଶ − 1 = 2ିଵ −
1 −contradiction. 

2.49 Find the maximum amount of 3-element sets that every two of 

them contain exactly one common element, but there exist no 

element that is in all sets simultaneously. 

Ukrainian NMO-2015 

Solution: Answer: 7 sets. Suppose that there exist at least 8 such sets, let 
ܯ = ,ݕ,ݔ}  is one of such sets. Every other set (there are no less than 7 sets) {ݖ
contains exactly one element from ܯ. Therefore there exist at least three sets 
 Since .ݔ for example ,ܯ ଷ that have one common element fromܯ ଶ andܯ,ଵܯ
there is no element that is in all sets simultaneously, there exist a set ܯ that 
does not contain ݔ. As this set intersect ܯ, it contain another element of ܯ, for 
example ݕ. This set can not contain the same common element with two sets 
of ܯଵ,ܯଶ and ܯଷ, otherwise this element is the second common element of 
that pair of sets. Therefore this set have to contain common element with 
every of these sets, but not ݕ. So, the set have to contain at least 4 elements, 
and received contradiction ends proof. The example of 7 such sets: 

{1; 2; 3}; {1; 4; 5}; {1; 6; 7}; {3; 5; 7}; {3; 4; 6}; {2; 4; 7}; {2; 5; 6}. 

 

2.41 Primes ,,  such that ,࢘ +  < 111, fulfill the equality  

ା
࢘

=  −  +  .࢘ Find the maximum value of the product .࢘

Ukrainian NMO-2015 

Solution: Answer: 2014. Rewrite the condition of the problem in such way: 
ݎ)ݍ + 1) − ݎ) − 1) = ݎ If	ଶ.ݎ > 2, then ݎ is odd, but in this case the left part 
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is even. Thus ݎ = 2. Hence, the initial condition becomes:  = ݍ3 − 4, so the 
maximum ݎݍ is in case of maximum ݍ. From the condition  + ݍ < 111 
follows that ݍ < 29.If ݍ = 23 then  = 65 is not a prime.If ݍ = 21 then 
 = 53 is a prime, so it is a required number. Hence ݎݍ = 53 ∙ 19 ∙ 2 = 2014. 

2.42 Consider the numbers ࢇ = (),࢈ = (), and ࢉ = (). If 
you sort ࢈,ࢇ	and	ࢉ from smallest to largest, you obtain: 

A) ࢇ < ܾ < ܿ          B) ࢇ < ܿ < ܾ             C) ࢈ < ܽ < ܿ          D) ࢉ < ܽ < ܾ            
E) ࢉ < ܾ < ܽ		                                                               Germany  NMO-20174 

Solution: D) ܿ < ܽ < ܾ 

2.43 Can real numbers ࢠ,࢟,࢞ satisfy: 


࢞) − ࢞)(࢟ + (࢟ +


࢟) − +࢟)(ࢠ (ࢠ +


ࢠ) − +ࢠ)(࢞ (࢞ = 	? 

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Answer: no. Denote ܽ = ଶݔ − ,ଶݕ ܾ = ଶݕ − ܽ−then	ଶݖ − ܾ = ଶݖ −
ଶ and the equation can be rewritten as: ଵݔ


+ ଵ


= ଵ

ା
⇔ (ܽ + ܾ)ଶ = ܾܽ ⇔

ܽଶ − ܾܽ + ܾଶ = 0 ⇔ ቀܽ − 
ଶ
ቁ
ଶ

+ ଷమ

ସ
= 0. The last equality holds only with 

ܽ = ܾ = 0, which is impossible. Therefore, the equation has no solutions. 

2.44 Solve in the real numbers the system 

⎩
⎪⎪
⎨

⎪⎪
࢞⎧ =

ࢠ
࢟ −

࢟
ࢠ ,

࢟ =
࢞
ࢠ −

ࢠ
࢞

ࢠ =
࢟
࢞ −

࢞
࢟

 

A.Fellouris-Hellenic  NMO-2014 

Solution: For ݔ, ,ݕ ݖ ∈ ℝ, such that ݖݕݔ ≠ 0, the system is written: 
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ቐ
ݖݕଷݔ = ଶݖ − ;ଶݕ2 		(1)
ݔݖଷݕ = ଶݔ − ;ଶݖ2 		(2)
ݕݔଷݖ = ଶݕ − ;ଶݔ2 		(3)

 

Using summation by parts we find: 

ଶݔ)ݖݕݔ + ଶݕ + (ଶݖ = ଶݔ)− + ଶݕ + (ଶݖ ⇔ ଶݔ) + ଶݕ + ݖݕݔ)(ଶݖ + 1) = 0. 

Since ݖݕݔ ≠ 0 we have ݔଶ + ଶݕ + ଶݖ > 0, and so ݖݕݔ = −1; 		(4) 

Using equation (4) in the system of (1) − (3) we get: 

ቐ
ଶݔ = ଶݖ− + ;ଶݕ2 		(5)
ଶݕ = ଶݔ− + ;ଶݖ2 		(6)
ଶݖ = ଶݕ− + ;ଶݔ2 		(7)

 

From (5) and (6) we get ݕଶ = ଶݖ , while from (6) and (7) we get ݔଶ =  ଶ, andݖ
so:  ݔଶ = ଶݕ = ଶݖ ⇔ ݔ = ݕ = ݔ or ݖ± = ݕ− = ;ݖ± 		(8) 

Finally from equations (8) and (4) we have the solutions: 

,ݕ,ݔ) (ݖ ∈ {(−1 − 1,−1); (1,1,−1); (1,−1,1); (−1,1,1)}	 

 
2.45 Compare  to 0, where: 

	(ࢇ =  −  −  +  +  −  − ૠ + ⋯+  +  − 
− +  

	(࢈ =

 −


 −


 +


 +


 −


 −


ૠ +


ૡ +


ૢ + ⋯+


 +




−


 −


 +


 

Ukrainian NMO-2015 

Solution: Answer: ܽ)	ܣ = 0; ܣ	(ܾ > 0 

a) If we split all numbers into 504 groups of 4, from left to right, each 
group will have numbers of the type: ൫(4݇ + 1) − (4݇ + 2) −
(4݇ + 3) + (4݇ + 4)൯ = 0. 

As we can see, the sum of numbers in each group is 0, therefore, ܣ = 0. 
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b) Like in the previous question, split all numbers into groups of 4: 

൬
1

4݇ + 1
−

1
4݇ + 2

−
1

4݇ + 3
+

1
4݇ + 4

൰ 

Then the sum of numbers in each group is positive: 

1
4݇ + 1

−
1

4݇ + 2
−

1
4݇ + 3

+
1

4݇ + 4
> 0 ⇔

1
4݇ + 1

−
1

4݇ + 2
>

1
4݇ + 3

−
1

4݇ + 4
 

1
(4݇ + 1)(4݇ + 2)

>
1

(4݇ + 3)(4݇ + 4)
. 

2.46 Find all integers ܊,܉ for which there exist integers ܠ,  such that ܡ

the following equation holds: 

ૡ࢞ + ૡ࢟ = ࢇ + ࢇ࢈ +  ࢈

Bogdan Rublyov Ukraine NMO-2015 

Solution: Answer: all pairs ܽ, ܾ of the same parity. If ܽ, ܾ has the same parity, 
define ݕ,ݔ as: ݔ = ା

ଶ
ݕ, = ି

ଶ
.	Then they are obviously integers, and by 

substituting them we verify that the equation does hold. If ܽ, ܾ don’t have the 
same parity, the right-hand side of the equation is an odd integer. For 
example, if ܽ is even and ܾ is odd, then ܽସ + 6ܽଶܾଶ is even and ܾସ is odd, 
therefore, the equality cannot hold.   

2.47 Find the smallest integer  for which there are positive integers 

 > ݇ > 1 satisfying the equation: …ᇣᇤᇥ


= …ᇣᇤᇥ


∙  

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Answer: ݉ = 101.	Obviously ݉ > 9. If ݉ = ܾܽതതത, where ܽ ≥ 1, then 
the equality 11 … 1ᇣᇤᇥ


= 11 … 1ᇣᇤᇥ


∙ ܾܽതതത implies that ܾ = 1. But in this case 
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regardless of ܽ the second last digit of the product 11 … 1ᇣᇤᇥ


∙ ܾܽതതത is equal to 

ܽ + 1 if ܽ < 9 or to 0 if ܽ = 9, hence, it can’t be 1. Therefore ݉ ≥ 100. Clearly 
݉ = 100 doesn’t satisfy the condition, because  11 … 1ᇣᇤᇥ


∙ 100 = 11 … 1ᇣᇤᇥ


00. 

On the other hand, ݉ = 101 does, because 101 ∙ 11 = 1111. 

2.48 The road between  and  is 15 Km long, firstly the road goes up, 
then it is fla, and lasly it goes down. It is known the every part is no 
less than 1 km. The path made by a pedestrian takes exactly 3 hours. 
What are the minimum and the maximum amount of time that is 
taken by the path in opposite direction, if it is known that the speed of 
pedestrian while going up is 4 km per hour, while going straight is per 
hour and is 6 per hour while going down?  

Bogdan Rublyov-Ukraine NMO-2015 

Solution: Answer: ݐ௫ = ଽ
ଷ

, ݐ = ଷ
ଶସ

. Mark the up, flat and down pars on 

the way from	ܣ and ܤ as ݕ,ݔ, ݔ respectively. Then	ݖ + ݕ + ݖ = 15; 	௫
ସ

+ ௬
ହ

+
௭


= 3; 	1 ≤ ,ݕ,ݔ ݖ ≤ 13. From the first equation: ݕ = 15 − ݔ −  substitute it ,ݖ
into the second equation: 

ݔ
4

+
15 − ݖ − ݔ

5
+
ݖ
6

= 3 ⇔
ݔ
4
−
ݔ
5

=
ݖ
5
−
ݖ
6
⇔

ݔ
20

=
ݖ

30
⇔ ݖ =

3
2
 ݔ

Then ݕ = 15 − ݔ − ݖ = 15 − ݔ − ଷ
ଶ
ݔ = 15 − ହ

ଶ
 ݔ

So the required time is: 

ݐ =
ݔ
6

=
ݕ
5

+
ݖ
4

=
ݔ
6

+ 3 −
ݔ
2

+
3
8
ݔ = 3 +

ݔ
24

 

The maximum (the minimum) ݐ can be in case of ݔ is maximum of the problem. 

Put down the limitation for ݔ, which follow from the condition of the problem: 

1 ≤ ݔ ≤ 13; 1 ≤ ݖ =
3
2
ݔ ≤ 13 ⇔

2
3
≤ ݔ ≤

26
3

; 1 ≤ ݕ = 15 −
5
2
ݔ ≤ 13 ⇔ 
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ସ
ହ
≤ ଶ଼

ହ
. Since all conditions have to be fulfilled simultaneously, we have such 

limitation for ݔ: 

1 ≤ ݔ ≤
28
5

 

If ݔ = 1, then ݖ = ଷ
ଶ
 and ݕ = ଶହ

ଶ
. If ݔ = ଶ଼

ହ
, then ݖ = ସଶ

ହ
 and ݕ = 1. 

௫ݐ = 3 +
1

24
∙

28
5

= 3 +
7

30
=

97
30

; ݐ = 3 +
1

24
∙ 1 =

73
24

 

 

2.49 The const of one kilo of chocolate−࢞ UAH and a kilogram of 
potatoes−۶ۯ܃ ࢟, numbers ܠ and ܡ are positive integers and have not 
more than 2 digits. Mother said to Mary to buy 200 grams of 
chocolates and 1 kg of potatoes that cost exactly ࡺ	ࡴࢁ. Mariyko 
confuses all and bought 200 grams of potatoes and 1 kg of chocolates. 
He had to pay exactly ࡹ >  It turned out that the number .ܪܣܷ	ܰ
 ,have no more than two digits and are formed of the same digits ࡺ,ࡹ
bu in a different order. How much is a kilogram of potatoes and a 
kilogram of candies cost? 

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Let the chocolate and potato are respectively ݔ and ݕ	ܪܣܷ, thus 
ܰ = ܾܽതതത = 10ܽ + ܾ; ܯ	 = ܾܽതതത = 10ܾ + ܯ.ܽ > ܰ so ܾ > ܽ > 0. We have: 

ଵ
ହ
ݔ + ݕ = 10ܽ + ܾ and ଵ

ହ
ݕ = ݔ = 10ܾ + ܽ, or ݔ + ݕ5 = 50ܽ + 5ܾ and 

ݕ + ݔ5 = 50ܾ + 5ܽ.	Where ܾ > ܽ > 0−digits, ݔ >  Then .ݕ

ݔ)4 − (ݕ = 45(ܾ − ܽ); 		(1) 

ݔ)6 + (ݕ = 55(ܾ + ܽ); 		(2) 

So ܾ − ܽ ⋮ 4 and ܾ + ܽ ⋮ 6. Then: ܾ = 5,ܽ = 1 or ܾ = 8,ܽ = 4. 

Case 1. ܾ = 5,ܽ = 1, then ൜ݔ − ݕ = 45
ݔ + ݕ = 55. So ݔ = ݕ,50 = 5. 
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Case 2. ܾ = 8,ܽ = 74, then ൜ ݔ − ݕ = 45
ݔ + ݕ = 110. So, ݕ,ݔ −nonintegers. 

2.50 It is known that the arithmetic average of the numbers ࢈,ࢇ is 
equal to the number ࢉ, so ࢉ = 


ࢇ) +  and that the harmonious ,(࢈

averge number of ࢇ, ࢈ so ,࢈ is equal to the number ࢉ = 

ାࢇ


ࢉ
. Is it 

necessary that numbers ࢈,ࢇ,  ?are equal ࢉ

Bogdan Rublyov-Ukrainian NMO-2015 

Solution: Answer: no necessarily. Let’s rewrite the condition of harmonious 
average: ܾ = ଶ

ା
 

2ܽ ∙
ܽ + ܾ

2
= ܾ ൬ܽ +

ܽ + ܾ
2

൰ ⇔ ܽଶ + ܾܽ = ܾܽ +
ܾܽ + ܾଶ

2
⇔ 

2ܽଶ = ܾܽ + ܾଶ ⇔ (ܽ − ܾ)(2ܽ + ܾ) = 0. 

Let’s denote, for example, ܽ = 2, which means ܾ = −4 and ܿ = −1, hence we 
receive three different numbers satisfying the conditions.  

2.51 Determine the smallest integer , for which there exist integers 
,࢞ ,࢞ … , ,ࢇ,ࢇ and positive integers ࢞ …  so that ࢇ,

࢞  + ⋯+ ࢞ = ,ࢇ࢞ + ⋯+ ࢞ࢇ > ࢞ࢇ,0 + ⋯+ ࢞ࢇ < 0. 

Mediterranean MO-2017 

Solution: The answer is ݊ = 3. One possible example for ݊ = 3 is ݔଵ = 2 and 
ଶݔ = ଷݔ = −1, with ܽଵ = 4,ܽଶ = 1,ܽଷ = 6. 

For ݊ = 1, the first constraint enforces ݔଵ = 0; this is in contradiction with the 
other two constrains. For ݊ = 2, the first constraint enforces ݔଶ =  ଵ. Thenݔ−
the second constraint is equivalent to ܽଵݔଶ − ܽଶݔଵ > 0. If we multiply this 
inequality by the positive value ܽଵ + ܽଶ, we get ܽଵଶݔଵ − ܽଶଶݔଵ > 0: this is 
equivalent to   ܽଵଶݔଵ + ܽଶଶݔଵ > 0 and contradicts he third constraint. 
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2.52 Let ࢇ and ࢈ be positive real numbers, such that their product is 1 
and the sum of their squares is 4. Find the exact value of the 
expression ିࢇ +   .ି࢈

Slovenia  NMO-2013 

Solution: From ܽଶ + ܾଶ = 4 and ܾܽ = 1 we get (ܽ + ܾ)ଶ = ܽଶ + ܾଶ + 2ܾܽ =
4 + 2 = 6, or ܽ + ܾ = √6 since ܽ and ܾ are positive. This implies 

1
ܽଷ

+
1
ܾଷ

=
ܽଷ + ܾଷ

ܽଷܾଷ
=

(ܽ + ܾ)ଷ − 3ܾܽ(ܽ + ܾ)
ܽଷ + ܾଷ

=
6√6 − 3 ∙ 1 ∙ √6

1
= 3√6. 

 

2.53 Let ࢞ = 	. Then the value of the expression 

࢞ − ඥ࢞ 	+  +


࢞√ +  + ࢞
 

is equal to () − 			()			()			(ࡰ)			(ࡱ)  

Slovenia NMO-2013 

Solution: After finding the common denominator and rearranging the 
expression we get 

൫ݔ + ଶݔ√ + 1൯൫ݔ − ଶݔ√ + 1൯ + 1
ଶݔ√ + 1 + ݔ

=
൫ݔଶ − ଶݔ) + 1)൯+ 1

ଶݔ√ + 1 + ݔ
= 0. 

The answer is ܤ. 

2.54 Prove that arbitrary real numbers ܉ and ܊ satisfy the inequality 

ࢇ) + ࢈ࢇ − )࢈ + ࢇ)࢈ࢇ + ) ≥  

When does the equality hold? 

Slovenia NMO-2013 
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Solution: Expanding the left-hand side of the inequality we get ܽଶ + ܽଶܾଶ +
ܾସ + 2ܽଶܾ − 2ܾܽଷ + ܽଶܾଶ. This can be rearranged into ܽଶ(1 + ܾ)ଶ +
ܾଶ(ܾ − ܽ)ଶ, and the desired inequality now follows. At the same time we see 
that the equality holds if and only if ܽ = ܾ = 0 or ܽ = ܾ = −1. 

 

2.55 Prove that the 2015-digit integer …ᇣᇤᇥ
ૠ

…ᇣᇤᇥ
ૠ

 is composite. 

Ukrainian NMO-2015 

Solution: Rewrite the number as follows: 

11 … 1ᇣᇤᇥ
ଵ

2 11 … 1ᇣᇤᇥ
ଵ

= 11 … 1ᇣᇤᇥ
ଵ

00 … 0ᇣᇤᇥ
ଵ

+ 11 … 1ᇣᇤᇥ
ଵ

= 11 … 1ᇣᇤᇥ
ଵ଼

00 … 0ᇣᇤᇥ
ଵ

+ 11 … 1ᇣᇤᇥ
ଵ଼

⋮ 11 … 1ᇣᇤᇥ
ଵ଼

 

hence, it’s not prime.  

 

 

 

 

 

 

 

 

 

 

 

 


