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                   An interesting inequality regarding convex / concave functions is highlighted .  
                   By particularizing this inequality to different functions, numerous applications 
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           In [1] the following statement was proposed : 
           If  a ,  b , c ; x ,  y , z  are strictly positive real numbers and   n > 1 , then :         
                    

n n n n n n nax by cz a y bz cx az bx c y a b c x y z              .           (1) 

           In solving inequality (1), as in the following Lemma, an essential role 
       was played by Jensen's weighted inequality , which we recall in the statement :  
   

  1. Theorem  ( Jensen's weighted inequality ) 
   

   If   f : I  ℝ   ℝ   is a convex function , I an interval , then , 
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                If  f   is a  o concave function  on  I , the inequality sign in (J) is reversed . 
           The equality in (J) occurs if and only if  x 1  = x 2  = ‧ ‧ ‧ = x n   , or when the function f 
         is a linear (affine) function .            

             Starting from this famous inequality, we will obtain a new inequality for 
         convex functions , respectively concave functions . 
 

              2. Lemma    

            If   f : I  ℝ   ℝ   is a convex function and , 
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                 If the function f is  concave  on I , then in inequality (2) the inequality sign is inverted .    
    

            Proof 
 



       Using  Jensen's weighted inequality for convex function , we have : 
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     Adding the relations (31) , (32), . . . , (3n), grouping and using the condition relationship , 
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  we obtain the inequality from Lemma's statement .     

 

         Starting from this Lemma , by particularizations of the function  f , numerous other   
      inequalities are obtained . 
 

         3. Proposition 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , and  m > 1 ,  

n  ℕ*  ,  then the following inequality occurs : 
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  If  0 < m < 1  the inequality in relation (4) is inverted . 
 

           Proof 
 

  We consider the function  f : (0 , ∞)   (0 , ∞)  ,  f (x) =  x 
m  ,  m > 1 , - obviously 

convex on  (0 , ∞)  and the weights :       
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for which we obvious  have   p 1  + p 2  + . . . + p n  = 1 . 
  With these in Lemma’s inequality (2) , we get : 
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 where does the inequality in the statement come from. 
   Equality occurs when  x1 = x2 = ‧ ‧ ‧ = xn  . 
   If  0 < m < 1 , the function  f  is concave  and we will apply inequality (2) with the  
opposite sense .  
  For example, if in (4) we operate the substitution m  1 / m  , we obtain :  
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         4. Remark   Inequality (4) is a generalization of inequality (1) . 
           

         For positive real numbers α1 , α2 , ‧ ‧ ‧ , αn  we will use for their arithmetic mean 

      the notation                , , ,
… 
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          With this notation , we can reformulate the result from Proposition 3 in the language of      
      means : 
 

         5. Corollary 
 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , and  m > 1 ,  

n  ℕ*  ,  then the following inequality occurs: 
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            Proof 
 
 

            Everything results from relation (4) , by dividing by  n 
m  and recognizing the respective  

         arithmetic means , in accordance with the notation (5) . 
 

   If we also consider the power-mean (or generalized mean , or Hölder mean) of positive  
real numbers α1 , α2 , ‧ ‧ ‧ , αn , noted and defined as follows ,  
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then we will have another reformulation in the language of means : 
 

         6. Corollary 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , and  m > 1 ,  

 n  ℕ*  ,  then the following inequality holds :     
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           Proof 
 

   The inequality results from relation (6), by dividing by n and raising to to the power  1 / m . 
 

         7. Proposition , [3] 
 



  If  a1 , a2 , ‧ ‧ ‧ , an ; x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , then the following 
 inequality holds : 
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            Proof 

   The function  f : (0 , ∞)    (0 , ∞)  , )
1

( =f x
x

   , is a convex function pe (0 , ∞) ,    

so applying the inequality from Lemma , in the form , 
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with the weights , 
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(for which we obviously have 
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statement.                                                                               
 

  Also, here we can give a description in the language of means, now using the notation :                                                
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       for the harmonic mean of positive real numbers x1 , x 2 , ‧ ‧ ‧ , x n  . 
 

           8. Corollary 
 

 

    If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers ,  then the  
following inequalities hold : 
 

   a)
   

 

      
   

   

 

,                                                                                

  

 

        

     

1 1 2 2 1 2 2 3 1 1 2 1

1 2 1 2

1

1 1 1

1 1
(11)

A A A

A H

n n n n n n n n n

n n n n

a x a x a x a x a x a x a x a x a x

a a a x x x
n


    

  

 




 

      b)
    

          

   
   

 

                                             

, , , , , , , , , , , ,

, , , , , ,                        

    
 

1 1 2 2 1 2 2 3 1 1 2 1

1 2 1 2

1

(12)

H A A A

A H

n n n n n n n n n n

n n n n

a x a x a x a x a x a x a x a x a x

a a a x x x

     

 


      

            Proof 
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 results from Proposition 7 in accordance with notations (5) and (10). 



         b)  Rewriting a)
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     immediately yields the result from the statement . 
 

         9. Proposition 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , then the following 
 inequality holds : 
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           Proof 
 

   Function  f : (0 , ∞)    (0 , ∞)  , l( ) n=f x x  .  is a concave function on  (0 , ∞) , 
so applying the inequality from Lemma , but with the inequality sign reversed, and with the 

weights : , , ,   ,
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          from which the inequality from the statement results . 
 

          Here too we can convert the result from the statement by reformulating it in the language  
       of means .  
          For this, let us also recall the geometric mean of positive real numbers. α1 , α2 , ‧ ‧ ‧ , αn      

     with  notation and definition ,   , , ,… …   2 21 1[  G n
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         10. Corollary 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ; x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , then the following 
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 The Proof 

    follows from Proposition 9 in agreement with notations (5) and (14).  
        

       11. Remark            

      As a matter of fact , we also have , 
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    it turns out that we have even the very next refinement of the inequality of means , 

 

        
12. Corollary  ( O rafinare a inegalitatii GMAM ) 

 

 If  a1 , a2 , ‧ ‧ ‧ , an  ; x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , then the following 
 inequality holds : 
 

     

 

 

, , ,

, , ,

, , ,

                                                                                          

  


1 2

1 1 2 2 1 2 2 3 1 1 2 1

1 2

1

G

G

A

n n

n n n n n n n

n n

x x x

a x a x a x a x a x a x a x a x a x

n a a a




        




 

        , , ,                   1 2 (17)An nx x x

 

         13. Proposition 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , with the notations : 
 A a1 + a2 + ‧ ‧ ‧ +  an  and  X x1 + x2 + ‧ ‧ ‧ + xn  ,then the following inequality holds :
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            Proof 
 

         The function  f : (0 , ∞)    (0 , ∞) , ( ) ln= xf x x   is a convex function on (0 , ∞) ,     
      so applying the inequality in  Lemma , we obtain in a first instance: 
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after some routine calculations , the relationship in the statement is obtained .

  

            

 

        14. Proposition 
 

  If  a1 , a2 , ‧ ‧ ‧ , an  ; k ; x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers  , with notation , 
 A a1 + a2 +  ‧ ‧ ‧ +  an   , then the following inequality holds : 
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       Proof 

 

        Function  f : (0 , ∞)    (0 , ∞) , 0,( ) = xf x k k   , is a convex function on (0 , ∞) ,     
     so applying the inequality from Lemma , with the weights : 
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after a few simple calculations , the relationship in the statement is obtained . 
 

        15. Proposition 
 

 If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , with notation , 
 A a1 + a2 +  ‧ ‧ ‧ +  an ,  then the following inequality holds : 
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        Function  f : [0 , π ]   ℝ  , i( ) s n = f x x
 is a concave function on  [0 , π ]  ,     

     so applying the inequality in  Lemma , with the weights :     
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for which we obviously have 
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              Analogously, if we consider the function  f : [0 , π / 2]   ℝ  , o( ) c s = f x x
 which is 

      also a concave function on  [0 , π / 2] , is obtained in a similar way ,  
 
 

        15. Propoziţie 
 

If  a1 , a2 , ‧ ‧ ‧ , an  ;  x1 , x2 , ‧ ‧ ‧ , xn  are strictly positive real numbers , with notation , 
 A a1 + a2 +  ‧ ‧ ‧ +  an ,  then the following inequality holds : 
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    Numerous other inequalities can be obtained by conveniently choosing convex or concave 

functions – to which  Lemma 2  is applied.
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