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Introduction

In this work, we present a deeply integrated inequality that exploits classical
and modern techniques from:

• Functional Analysis: Jensen-/Clarkson-type inequalities in Banach
spaces, duality arguments, and Orlicz norms.

• Probability Theory: Advanced tail bounds via Talagrand’s transportation-
cost (or TCI) inequalities, plus Markov-type arguments.

• Stochastic Analysis: Girsanov’s theorem to change the underlying
measure and bound exponential moments or path deviations.

• Measure Theory: Subtle integrability criteria ensuring that all trans-
formations remain well-defined.

Our final statement (Theorem 3.1, Section 3) illustrates how to derive
a unified control of (1) the expectation of a convex functional of a random
sum and (2) the tail probability under a measure change. This orchestrates
multiple ideas in one place to yield a powerful global bound.
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1 Setting and Notation

Let (Ω,F ,P) be a probability space, and let {Xi}ni=1 be random variables
taking values in a (potentially infinite-dimensional) Banach space B. For-
mally,

Xi : Ω→ B, B is a separable Banach space with norm ‖ · ‖.

Define

Sn =
n∑
i=1

Xi ∈ B.

We assume each Xi belongs to some Orlicz space LΦ(Ω;B), where Φ is a
Young function (for example, Φ(x) = exp(xα)− 1, α > 1), ensuring

E
[
Φ(‖Xi‖)

]
<∞.

Likewise for Sn.
Let f : B → [0,∞) be strictly convex and possibly Gâteaux-differentiable,

subject to the integrability condition E[f(Sn)] <∞.

1.1 Dual Pairing and Banach-Space Jensen

A key extension of Jensen’s inequality to Banach spaces uses the dual pairing
〈b, b∗〉 for b ∈ B and b∗ ∈ B∗. If f is strongly convex with parameter κ > 0,
then for x, y ∈ B,

f(y) ≥ f(x) + 〈f ′(x), y − x〉 +
κ

2
‖y − x‖2.

Such an inequality—when combined with Bochner integration—yields ad-
vanced Banach-space versions of Jensen’s inequality.

2 Intermediate Results

We collect three lemmas. The first concerns Orlicz norms and Minkowski-
type inequalities, the second is a Talagrand (transportation-cost) bound, and
the third is a Girsanov transform lemma for measure changes.
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2.1 Lemma 1: A Minkowski–Orlicz Inequality in Ba-
nach Spaces

Lemma 2.1. Let X1, . . . , Xn ∈ LΦ(Ω;B), and define Sn =
∑n

i=1Xi. Under
standard convexity assumptions on Φ (dominating a quadratic near 0 and
growing sufficiently fast for large arguments), there exists a constant CΦ > 0
such that

‖Sn‖LΦ(B) = inf
{
λ > 0

∣∣∣ E[Φ(‖Sn‖λ )] ≤ 1
}
≤ CΦ

n∑
i=1

‖Xi‖LΦ(B).

Sketch of Proof. Combine classical Orlicz-space geometry with the triangle
inequality in LΦ(B). In simpler cases (e.g. Φ(x) = xα/α for α > 1), one
obtains a bound akin to

‖X1 + · · ·+Xn‖Lα(B) ≤ n1−1/α
(
‖X1‖Lα(B) + · · ·+ ‖Xn‖Lα(B)

)
,

but in the general Orlicz setting we get a constant CΦ that depends on Φ.

2.2 Lemma 2: A Talagrand-Type Transportation-Cost
Bound

Lemma 2.2 (Talagrand Bound). Suppose P satisfies a transportation-cost
inequality (TCI) with constant τ > 0 on B, i.e. for all probability measures
ν � P,

Tc(ν,P)2 ≤ 2τ H(ν | P),

where Tc is the L2-Wasserstein cost for c(x, y) = ‖x−y‖2, and H(ν|P) is the
relative entropy. Then for any 1-Lipschitz function ϕ : B → R,

P{ϕ(Sn) ≥ m} ≤ exp
(
−m

2

2τ

)
.

Sketch of Proof. A standard argument: If ϕ is 1-Lipschitz, then ϕ(Sn) has
sub-Gaussian tails under P by the TCI. Detailed treatments appear in works
of Talagrand, Bobkov–Götze, and others on measure concentration.

Remark 2.3. In finite dimensions, such a TCI often arises from log-concave
measures or Gaussian measures. In infinite dimensions, one typically uses
Gaussian-like or product measures with additional properties (e.g. a Bakry–Émery
criterion for curvature).
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2.3 Lemma 3: A Girsanov-Type Argument for Chang-
ing Measures

Lemma 2.4 (Girsanov–Kusuoka–Stroock). Assume (Ω,F ,P) supports a cylin-
drical Brownian motion (Wt)t≥0 in a reflexive Banach space B. Let θt be an

adapted B∗-valued process with
∫ T

0
‖θt‖2

B∗ dt < ∞ a.s. Then there is an
equivalent probability measure Q ∼ P on (Ω,F) under which

W̃t = Wt −
∫ t

0

θs ds

is a cylindrical Brownian motion in B, and

dQ
dP

∣∣∣∣∣
FT

= exp
(∫ T

0

〈θs, dWs〉 − 1
2

∫ T

0

‖θs‖2
B∗ ds

)
.

Sketch of Proof. This is essentially the Girsanov theorem in Banach spaces
(Kusuoka–Stroock extension). The density arises from the exponential mar-
tingale associated with θt.

Remark 2.5. The measure change lets us tilt or re-center the distribution
of Sn (when it can be embedded in a stochastic process), thereby improving
certain bounds (e.g. for large deviation estimates).

3 Main Inequality and Proof

We now combine all these tools into one statement.

Theorem 3.1 (A Comprehensive Inequality). Let X1, . . . , Xn be B-valued
random variables in an Orlicz space LΦ(Ω;B). Define Sn =

∑n
i=1Xi. Let f :

B → [0,∞) be strictly convex, Gâteaux-differentiable, and satisfy E[f(Sn)] <
∞. Suppose:

(i) (Banach-Jensen) f is strongly convex on B, i.e. for κ > 0,

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
κ

2
‖y − x‖2, x, y ∈ B.

(ii) (Orlicz-Minkowski) ‖Sn‖LΦ(B) ≤ CΦ

∑n
i=1 ‖Xi‖LΦ(B), as in Lemma 2.1.
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(iii) (Transportation-Cost Inequality) Under P, Sn satisfies Lemma 2.2
with some constant τ .

(iv) (Measure Tilt) If necessary, one can apply Lemma 2.4 to shift the
distribution of Sn.

Then for any m > 0 and any 1-Lipschitz ϕ : B → R, the following hold:

(1) Lower Bound:

E
[
f(Sn)

]
≥ f

(
E[Sn]

)
+

κ

2
E
[
‖Sn − E[Sn]‖2

]
.

(2) Upper Bound:

E
[
f(Sn)

]
≤ n f

(
1
n
‖Sn‖LΦ(B)

)
≤ n f

(
CΦ

n

n∑
i=1

‖Xi‖LΦ(B)

)
.

(3) Talagrand Tail:

P
{
ϕ(Sn) ≥ m

}
≤ exp

(
−m

2

2τ

)
.

(4) Tilted Measure: There exists Q ∼ P under which Sn can be re-
centered by some drift θ (via Girsanov), improving bounds when Sn is
inconveniently centered under P.

Proof Outline. (1) Lower Bound: Strong convexity of f implies

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
κ

2
‖y − x‖2.

Choose x = E[Sn] and y = Sn. Taking expectations, the cross term vanishes
and we get

E[f(Sn)] ≥ f(E[Sn]) +
κ

2
E
[
‖Sn − E[Sn]‖2

]
.

(2) Upper Bound: By a Banach-space extension of Jensen (or a simpler
pointwise inequality),

f(Sn) = f
(
n · Sn

n

)
≤ n f

(Sn
n

)
.
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Taking expectation and applying an integrability argument (e.g. E[f(‖Y ‖)] ≤
f(‖Y ‖LΦ(B)) for a suitable monotone f) gives

E[f(Sn)] ≤ n f
(
‖Sn/n‖LΦ(B)

)
.

Then Lemma 2.1 implies∥∥∥Sn
n

∥∥∥
LΦ(B)

≤ CΦ

n

n∑
i=1

‖Xi‖LΦ(B),

hence

E[f(Sn)] ≤ n f
(
CΦ

n

n∑
i=1

‖Xi‖LΦ(B)

)
.

(3) Talagrand Tail: From Lemma 2.2, any 1-Lipschitz ϕ yields

P{ϕ(Sn) ≥ m} ≤ exp
(
−m2

2τ

)
.

(4) Tilted Measure: If we wish to recenter Sn or impose a drift, Lemma 2.4
shows that we can define θt and switch from P to Q, under which Sn (em-
bedded in a cylindrical Brownian motion) has a different distribution. This
can tighten certain bounds or facilitate large deviation estimates.

All parts together give the claimed inequalities.

4 Concluding Remarks and Generalizations

1. Extensions to Orlicz–Bochner Spaces. We can work in more general
Orlicz–Bochner or Lorentz–Bochner spaces, provided the triangle inequality
and integrability conditions hold.

2. Logarithmic Sobolev Inequalities. Talagrand’s TCI can be replaced
or complemented by a Gross-type logarithmic Sobolev inequality to handle
sub-Gaussian or sub-exponential tails in both finite and infinite dimensions.

3. Boué–Dupuis Variational Methods. Beyond Girsanov, one can use
Boué–Dupuis representations for exponential functionals (common in path-
space large deviations). This is often combined with measure-tilting for path-
dependent random variables.
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4. Applications in Stochastic PDEs. In PDE contexts (e.g. the 2D
Navier–Stokes equation with random forcing), the mild solution is split into
a stationary Gaussian plus a perturbation. Girsanov-based arguments then
alter the forcing to derive exponential moment or concentration estimates,
interacting neatly with TCI methods (via Hamilton–Jacobi or Kantorovich
PDE interpretations).

Final Summary. Theorem 3.1 merges:

• Banach-space Jensen (lower/upper bounds via strong convexity),

• Orlicz-Minkowski inequalities for sums in LΦ,

• Talagrand TCI for concentration of Sn,

• Girsanov measure tilt for refined distribution manipulations.

This combination exemplifies how modern probability, functional analysis,
geometry of Banach spaces, and measure theory converge to produce a single,
multi-pronged inequality bounding both the mean behavior and the tails of
complicated Banach-valued sums.
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